
I

I

I
I

I

I
I

I
I

I

I

I
I
I

I

I

I

I

I

Report

SPACE STATION

OPEI_AT I NG SYSTEM STUDY

SUMMARY REPORT

PREPARED FOR NASA

tINDER CONTRACT

NAS8-36462

PREPARED BY:

ALBERT E. HORN

MORRIS C. HARWELL

SMITH ADVANCED TECHNOLOGY, INC.

HUNTSVILLE, ALABAMA

February 1988

SMITH ADVANCED TECHNOLOGY ,

No. SAT88-0002

INC .

I

I

I
I

I

I

I
I

I

I
i

i
i

I

I
I

I

i

I.

II.

III.

IV.

V.

SPACE STATION OPERATING SYSTEM STUDY

SUMMARY REPORT

Page

OVERVIEW AND SUMMARY 1

A

B

C

D

E

F

Purpose and Methodology 1

Systems Tested 1

Structure of Report 4

Benchmark Summary 4

Source Code Conventions iI

Conclusions 13

I. Ada 13

2. Operating Systems 14

BENCHMARK SOFTWARE 16

A. Prime Number 16

B. Floating Point 16

C. Matrix Manipulation 19

D. Disk Write Timing 20

E. Ada Tasking 21

I. Ada Rendezvous Response 21

2. Ada Two-Task Data Transfer

3. Ada Two-Task Data Transfer via Shared Disk

F. System Services

I. Send/Receive

2. Process Creation

3. Synchronization

21

23

23

23

25

26

TEST PROGRAMS 28

A

B

C

D
E

F

G

Multi-Process Timing Test 28

Ada Multi-tasking Scenario 28

VAX High-Level Language Access to System Services . . 30

VAX Alarm Test 30

Ada "delay" Test 33

Ada Task Order Test 33

Multi-task Time Shared Execution Test 33

SYSTEM AND COMPILER ANALYSIS 35

A. Ada Terminal Input Analysis 35

B. Foreign Routine Capability 37

C. I/O Loading Analysis 40

D. Multiple Process Loading Analysis 41

E. Large Array Analysis 41

F. Ada Multiple Periodic Tasks With Calculation Tasks. . 46

G. VAX/VMS Ada Analysis 47

H. Alsys Ada (SUN) Analysis 48

I. Alsys Ada (PC/AT) Analysis 49

SOURCE LISTINGS 56

I

I

I
I

I

I
I

I

I
i

I

I
I

I
I

I

I

i

i

LIST OF TABLES

Table I-I

Table I-2

Table I-3

Table IV-1

Table IV-2

Page

Systems Tested 3

Benchmark Summary 5

Source Code Conventions 12

SUN Alsys Ada Benchmark Analysis 53

PC/AT Alsys Ada Benchmark Analysis 55

LIST OF FIGURES

Figure II-1 Prime Number Benchmark Commented FORTRAN Source . . . 17

Figure II-2 Rendezvous Response Time Flow Chart 22

Figure II-3 Send/Receive Data Transfer Flow Chart 24

Figure III-I Ada Multi-Tasking Scenario 29

Figure III-2 VAX QIO System Service Access 31

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

IV-I Corrected Version of Ada LRM Example 14.7 36

IV-2 Screen Copy of Foreign Routine Example 38

IV-3 Multiple Process Loading on MicroVAX 42

IV-4 Multiple Process Loading on SUN 3/260 43

IV-5 Large Array Analysis, (Ada and FORTRAN) 44

IV-6 Large Array Analysis, (FORTRAN) 45

IV-7 Source for testl.ada error test program 50

IV-8 Source for test2.ada error test program 51
IV-9 Source for Matrix Benchmark "Workaround". 52

I
I

I

I

!
I

I

I
I

I

I

I
I
I

I

i

i
!

I

SPACE STATION OPERATING SYSTEM STUDY

SUMMARY REPORT - FEBRUARY 1988

I. OVERVIEW AND SUMMARY

A. Purpose and Methodology

The current phase of this study has been based on the analysis,

evaluation, and comparison of the operating systems implemented on the

computer systems and workstations in the software development

laboratory. Primary emphasis of the study has been the DEC MicroVMS

operating system as implemented on the MicroVAX II computer, with

comparative analysis of the SUN UNIX system on the SUN 3/260

workstation computer, and to a limited extent, the IBM PC/AT

microcomputer running PC-DOS. Some benchmark development and testing

was also done for the Motorola MC68010 (VM03 system) before that system

was removed from the lab. These systems were studied with the

objective of determining their capability to support space station

software development requirements, specifically for multi-tasking and

real-time applications. The methodology utilized consisted of

development, execution, and analysis of benchmark programs and test

software, and the experimentation and analysis of specific features of

the systems or compilers in the study.

B. Systems Tested

Since the Ada programming language is the language selected for Space

Station software use, the primary programming language used for test

Page 1

I

I

I
!

I

I
I

I
I

i
I

I
I

I
I

i

I

I

i

software development on these systems was Ada. Other languages were

used as a comparison where compilers were available, such as FORTRAN,

"C", and Pascal. Several times during the course of the study, newer

releases of compilers were received and installed on the systems. In

such cases, all benchmarks and test programs were rerun to obtain new

data, such that all data presented in this report is a result of the

most recent releases. A table of the computer systems that were

included in the study, their operating systems, languages, and software

versions is presented in Table I-l.

Page 2

COMPUTER OPERATING SYSTEM LANGUAGES

I

I
I

I
I

I
I

I

I

I
i
I

I

I

I
i
I

DEC MicroVAX II

SUN 3/260

IBM PC/AT

Motorola MC68010

(VM03)

MicroVMS 4.5

SUNOS 3.2

(UNIX 4.2 BSD derived)

PC-DOS 3.2

UNIX System V/68 2.1

VERSAdos 4.3

Table I-1. Systems Tested

Page 3

VAX Ada VI.3

VAX FORTRAN V4.5

VAX C V2.2

VAX/VMS Macro V04

SUN FORTRAN 77

SUN C

SUN Pascal

Alsys Ada 3.0

SUN Assembly

Alsys Ada 3.2

TeleSoft Ada 2.1

Sys V/68 FORTRAN 77

Sys V/68 C

Sys V/68 Assembly

VERSAdos Pascal

M68000 Assembly

I

I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

C. Structure of Report

In the following sections of this report, the study is presented in its

major categories. First, benchmark programs are detailed. These

programs were developed to quantify the performance of selected

functional areas of the operating systems/languages and produce a

measured execution time as a result. Second, test programs are

documented. These programs were used to test certain features and

capabilities of the operating system or language, and as such did not

produce a measured result. They did produce an observable behavior

from which conclusions could be made or the operating systems could be

compared. Next, specific operating system/compiler analysis results

are documented. For these cases, special tests to analyze a particular

problem area or to test options unique to a particular Ada compiler or

operating system were made. Finally, the source code listings for the

software developed for the study are presented. These listings should

prove valuable not only to allow comparisons to be made for other

operating systems/compilers, but to serve as an example of

implementation techniques for some of the features available with the

systems tested, such as calling operating system services, or linking

"foreign" subprograms to an Ada main program.

D. Benchmark Summary

A combined summary of benchmark timing results of all the benchmarks

for all the systems tested, for each programming language used, is

presented in Table I-2.

Page 4

I

I

I
BENCHMARK

SPACE STATION OPERATING SYSTEM STUDY BENCHMARK SUMMARY

TIMING RESULTS (ALL TIMES IN SECONDS)

SYSTEM

MicroVAX II SUN 3/260 IBM PC/AT

Motorola

68010

i Sieve Prime NumberExecution

FORTRAN i.I (4 byte integers)

1.7 (2 byte integers)

.50 13.8

C 1.3 .67 12.3
5.7

(optimized)

PASCAL .62 6.8

(VERSAdos)

ADA

ASSEMBLY

1.5

1.2 (w/suppress_all)

.89

,66 (check=

stack)

5.1

3.7 (check=

stack)

1.2 (2 byte integers) .39

205.8

4.5

(UNIX)

2.6

(VERSAdos)

I Sieve Prime NumberCompile and Link

FORTRAN 2.6 (compile) 6.0
7.5 (link)

C 6.1 (compile) 3.2 50.8

35.4 (link)

PASCAL 5.8

ADA 14.5 (compile) 25.0 56.7 (compile) 735.2
16.2 (link) 44.3 (link)

ASSEMBLY 15.2 2.0

I

I

i

Table I-2 Benchmark Summary

Page 5

MicroVAX II SUN 3/260 IBM PC/AT

MOTOROLA

68010

Floating Point

I ubroutine (no library)
FORTRAN

single

double

quad

C

3.3

4.2

4.2

462.7

(d-float)

(g-float)

6.2

15.3

399.3

single
double

quad

6.0
5.0
5.0

not

(d-float)

(g-float)

supported

18.0
15.2

205.7

I Adasingle

I double

quad

I

1.8

2.7

2.7

553.5

(d-float)

(g-float)

6.8 (float=

M68881)

I0.0

8.0 (float:

M68881)

27.7

45.5

300.6

I Floating PointLibrary Sine Function

FORTRAN

single
double

quad

1.8

3.3 (d-float)

58.9 (g-float)
266.7

7.4

11.6

144.9

C
single
double

quad

Ada

3.6

3.5 (d-float)

59.2 (g-float)

not supported

12.2
11 .9

142.6

I

I

I

single

double

quad

1.7

3.3 {d-float)

58.7 (g-float)

276.2

4.4

4.0

9.6

7.0

(float=

M68881)

(float=

M68881)

no

no

math

math

lib

lib

Table I-2

Page 6

(continued)

MicroVAX II SUN 3/260 IBM PC/AT

I MATRIX

FORTRAN

single

double

quad

9.7

6.5

II .0

II.i

518.8

("C" algorithm)
(d-float)

(g-float)

11.6

19.7

C *

single

double

quad

Ada

8.6

6.9 (d-float)

not supported

20.3

16.9

I
I

I

single

doublel

quad

I0.0

7.4 (w/suppress_all)

11.1

8.6

403.6

398.6

(w/suppress_all)

(w/suppress_all)

13.9

13.3 (float:

M68881)

15.8

16.3 (float:

M68881)

71.2

61.0

76.8

67.0

(checks=stack)

{ checks=stack)

* C

I

does not

simulated
support variable dimensions,
algorithm was used.

I
I

I
I

I
I

Table I-2 (continued)

Page 7

MicroVAX II SUN 3/260 IBM PC/AT

MOTOROLA

68010

I Disk Write Timing

FORTRAN 9.8 (pre-allocated

file blocks)

4.0 (buffered) 57.0

C

PASCAL

10.0 (pre-allocated) 2.0 (buffered)

2.0 (buffered)

39.0

19.0

Ada 9.7 (pre-allocated 1.9 13.4

(VERSAdos)

53.4

VAX/RMS

& contiguous)

(from FORTRAN)

8.3 (buffercount:22)

VAX/RMS
(from FORTRAN)

12.2 (block I/O,
not buffered)

Ada Tasking

I Rendezvous
1.7 0.6 1.0 129.0

Send/Receive

Send/Receive

6.6 3.2 19.1 775.7
2.6 (checks= 16.9 (checks=

stack) stack)

33.0 (pre-allocated(shared disk)

50.0

& contiguous)

7.2 (buffered) 58.3

I
I

I

I

I

I

Table I-2 (continued)

Page 8

Send/Receive 2-Task Data Transfer Benchmark

I MicroVAX II Using VMS System Services

I
I

I

I

I

I *.01

Installed Shareable Common for data transfer:

with event flags
with hiber/wake

with suspend/resume
with shared common flags/.01 sec wait*

with lock/unlock/.01 sec wait*

Mapped Global Section Common for data transfer

with hiber/wake

Mailbox for data transfer and sync.

Shared Disk File for data transfer

with shared common variables

second is smallest wait time available

8.1

8.1

8.4

9.7

12.1

7.5

13.3

20.7

I SUN 3/260 Using UNIX System calls

I

I
I
I

Shared Memory for data transfer:

with signals/.1 sec delay*
with semaphores/.1 sec delay*
with shared memory flags/.O1 sec delay
with shared memory flags/no delay

60.1
60.1

6.2
50.5

*shorter delays caused loss of synchronization

I

I

I

I

I

Table I-2 (continued)

Page 9

Process Creation Benchmark

MicroVAX II Using VMS System Services,

time in seconds per each process creation

I

I

I

I
I

Spawn Subprocess:

with defaults .88

with installed process image .82

with installed process image, no optional .80

data structures

Create Detached Process:

with hiber/wake synch., .07 sec wait

with event flag synch., .07 sec wait

with termination mailbox, synch, read to

mailbox

with termination mailbox, synch, read to

mailbox, installed image

.32

.32

.31

.28

Synchronization Benchmark

MicroVAX II

with hiber/wake services 1.2 seconds

I

I
I

I

I

Table I-2 (concluded)

Page I0

I

I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

E. Source Code Conventions

All source code files generated as a result of this study follow

standard naming conventions with regard to file extension (file

type) for each system and each language used. To form the source

code file name in order to examine the source code, merely append

the program name given in the benchmark program and test software

descriptions with the appropriate file type. For example, the disk

timing benchmark, named "timtes" is appended with the file type,

".ada" to form "timtes.ada", which is the file name of the source

code for this benchmark. A table of all file extensions or file

types for each of the systems studied, for each language used, is

presented in Table I-3, using the benchmark program named "zprime"

as an example.

Page 11

I

i

I COMPUTER PROGRAM

NAME

I

I

I

Motorola

FORTRAN

Pascal

et C et

Ada

Assembler(UNIX)

Assembler (VERSAdos)

zprlme.f

zprlme.sa

zprlme.c

zprlme.text

zprlmel.s

zprimel.sa

MicroVAX II

Ada

FORTRAN

Assembler

zprime.ada

zprime.for

zprime.mar

zprime.c

IBM PC AT

Ada zprime.ada

I

I
I

SUN 3/260

FORTRAN (F77)

tt C tt

Pascal _

Assembler

Ada

zprime.f

zprime.c

zprime.p

zprime.s

zprime.ada

I

I
I

I

I

I

Table I-3 Source Code Conventions

Page 12

I
I

I

I

I
I

I

I
I

I

I

I
I
I

I

I

I

I

I

F. Conclusions

I. Ada

The performance of the Ada compilers as used with the operating

systems and computers included in the study have proven to be on a

level with the other high-level languages to which they were

compared, with the exception of the TeleSoft Ada compilers used on

the Motorola System V/68 UNIX operating system. The TeleSoft

compilers (1.5 and 2.1) were preliminary versions whose performance

was so poor that they were useless as software development tools,

and should now be considered obsolete. Among the remaining Ada

compilers tested, the DEC VAX/VMS compiler is clearly superior.

VAX/VMS Ada is very well integrated into the VMS operating system

environment, having complete access to the rich set of VMS system

services and system libraries. No "bugs" or anomalies were found

with the VAX/VMS Ada compiler. In addition, the documentation for

VAX/VMS Ada is excellent, consisting of several volumes covering the

complete Ada software development system. Even DEC's version of the

Ada Language Reference Manual has been enhanced with VAX/VMS-

specific information.

The Alsys Ada compiler was also very good, although not quite as

mature as the DEC VAX/VMS product. Some errors were found with the

version of the compiler that Alsys delivered for the SUN

workstation. Alsys, Inc. claims that these problems are supposed to

be corrected in later releases. The problem areas are discussed in

Section IV of this report. It should also be noted that version 3.2

of the Alsys Ada compiler as delivered for the PC/AT finally

included a math library, but this library is a user supplied library

and is not supported by Alsys, Inc.!

Page 13

I
I

I

I
I

I

I

I
I

I

I

I
I
I

I

I
I

I

I

During the course of the study, the Ada language itself has proven

to be a capable language for real-time and multi-tasking

applications, frequently obviating the need or supplanting the

requirement for direct calls to operating system services. This is

especially true for UNIX or UNIX derived time-sharing operating

systems, or for operating systems with no direct capability for real-

time or multi-tasking functions, such as PC-DOS. In fact, the

send/receive benchmark for the MicroVAX showed that in some cases,

execution time for Ada tasking and rendezvous is faster than

equivalent methods using operating system services. There were,

however, some problem areas uncovered with the use of Ada for these

applications. For example, the capability for one task to suspend

and resume the execution of another is lacking in Ada. This was

demonstrated with the multi-task time-shared execution test program

(task_exec) where either a complex time-checking subprogram "work-

around" had to be used, or a time-slice option relied on, if

available. For VAX/VMS, operating system services exist to perform

this function as an alternative, while on a UNIX system, they do

not. Thus, where a real-time application requires scheduling of

tasks, Ada's current inability to provide task control of other

tasks' execution would be a limitation to be considered.

2. Operating Systems

Of the operating systems considered in this study, the most

applicable by far for real-time, multi-tasking applications is

MicroVMS for the DEC MicroVAX II. VAX/VMS (or MicroVMS, which is

actually the same operating systems as VMS for the larger VAX

Page 14

I

I

I

computer systems, only tailored specifically for the MicroVAX) is

DEC's standard proprietary operating system for the VAX series of

computers.

I

I

I

An important measure by which to judge an operating system's

suitability for real-time or multi-tasking use is its programming

interface, as opposed to its user interface, (which is a greater

factor in determining how "friendly" it is for the human user to

interact with the system). The programming interface for VAX/VMS

consists of an extensive repertoire of system services, standard

libraries, and optional routines all callable from any of the

standard VAX/VMS programming languages. The system services offer a

variety of means for a VMS process to communicate with another

process, control another processes' execution, control its own

execution, exercise direct control over I/O devices, control system

resources, and utilize system utilities.

!

I

I

The SUN workstation's UNIX operating system also has a considerable

number of operating system services (or "system calls" as the UNIX

documentation refers to them), and an extensive library. The system

calls do not, however, have as extensive a process communication and

I

I

I

control capability as VAX/VMS. For example, there is no direct SUN

UNIX call for a process to suspend or resume the execution of

another process. SUN UNIX system calls and libraries are a

combination of those from AT&T UNIX System V and Berkeley UNIX 4.2

BSD and as such do not incorporate any real-time extensions as

I

I

I

offered by vendors of "real-time UNIX" systems. A more complete

description of the UNIX operating system capabilities can be found

in the study report for Phase I of this study, titled "Space Station

Operating System Study Phase I Report".

Page 15

I

!

I

I

I

!

i

I

I

I

I

I

I

I

I

I

i

I

I

II. BENCHMARK SOFTWARE

The following subsections describe the benchmark programs.

A. Prime Number Benchmark

Typically, the first benchmark program to be applied to any system

under test was the "Sieve of Eratosthenes" prime number calculation

program derived from Byte magazine, September, 1981. This program

is based on using only repetitive addition for its algorithm, no

multiplication or division, and tests a system's high-level language

capability as well as the operating system and processor

performance. This program (name: zprime for all except Motorola

UNIX assembly: zprimel.s, and Motorola VERSAdos assembly:

zprimel.sa) was coded and executed for the widest variety of

languages of any of the benchmarks. It was also used to measure

compilation and linking (or binding) speed for each case tested.

Both the execution and compile/link timing data is presented in the

summary section of this document. A highly commented FORTRAN

version of this benchmark is presented in the source listing of

Figure II-I to explain the algorithms used in the program. Although

this version is correct, it was not used to obtain timing data and

is included here only for documentation.

B. Floating Point Benchmarks

The floating point benchmarks were derived from floating point test

programs published in DEC Professional magazine, September 1986 and

December 1986, and serve the purpose of testing the floating-point

capabilities of the system. These benchmarks consist of two

programs. One, (fpatestsub) to repeatedly perform floating point

Page 16

I
I

!
I

I

!

i
I

I

I

I

I
!
I

I

I

I

I

I

c

c

900

c

c

c

c

c

c

c

c

c

c

i0

PROGRAM ZPRIME
(zprime_pretty.for)

zprime.for Eratosthenes Sieve Prime Number Program in FORTRAN.

Compute all primes from 3 to 16K

logical flags(8191)

integer i

integer iprime

integer k

integer icnt

integer iter

t Array representing odd numbers starting

! with the number 3 and ending with
! the number 16383.

! Index for flags array.

! Used to store the actual value of a prime.

! Index in flags array for odd multiples

' of a prime.

! Total number of primes.

! Number of iterations of the program.

write(6,900)

format(' I0 iterations')

Repeat the calculations I0 times so we can

measure the time.

do 92 iter = I,i0

Set count of number of primes to zero.
icnt = 0

Set 8191-element array of flags (representing

all odd numbers starting with the number 3 and

going thru 16383) to all true (true meaning the

number is a prime). When finished with sieve,

all non-prime odd numbers will have their flags

set to false. We must start with the number 3

because we know that only after 2, all primes
are odd numbers!

do i0 i = 1,8191

flags(i) = .true.

Figure 11-1 (1 of 2)

Page 17

I
I

i

I

I
!

i

!
I

I

I

I
i

I
I

I

I

!

I

c

c

c

C

c

c

c

C

c

c

c

c

c

2O

c

c

90

c

c

cccc

91

92

c

901

Loop through flags array for each odd number.

The prime's index is 'i'. (Index 1 is for

the number '3'.)

do 91 i = 1,8191

Test for prime (always true for first time).

if (flags(i) .eq. .false.) go to 91

Yes, we have a prime, now do the algorithm

that converts the prime's index to the actual

value of the prime (for a 1-relative flag array,

a 0-relative flag array uses: iprime=i+i+3).

iprime = i + i + 1

Get index of Ist odd multiple of the prime

(3 times the prime's index plus 1 for a

1-relative flag array, 3 times the prime's

index plus 3 for a 0-relative flag array).

k = i + iprime

Loop to set all odd multiples of iprime to false

if(k .gt. 8191) go to 90

flags(k) = .false.

Get index of next odd multiple of the prime.

k = k + iprime

go to 20

icnt = icnt + 1

Increment count of number of primes found.

This is where iprime should be written out

if we want to see what the primes are.

type *,icnt,iprime

continue

continue

write(6,901) icnt

format(Ix, i6,' primes')

Write out the total number of primes found.

end

Figure II-I (2 of 2)

Page 18

I
i

I

I
I

I

I

I
I

I

I

I
I

I

I

I

I

I

I

calculations using division and addition and another (speed_test) to

repeatedly perform calculations using a sine subroutine from a math

library (the programs were named fpasub and speed_te, respectively,

on the PC/AT). Both of these benchmarks were performed using all

floating point formats available for each system tested. For the

MicroVAX, this consisted of single-precision (4-byte) format, two

double-precision (8-byte) formats, and quad-precision (16-byte)

format.

It should be noted that an earlier version of the "fpatestsub"

floating point benchmark did not use repetitive calls of a subroutine

to perform the calculations. When this program was applied to the

MicroVAX II, the language compilers used such extensive optimization

techniques that the loops and unused calculation results were

"optimized away".

C. Matrix Manipulation Benchmark

The purpose of this benchmark (name: runS) was to test both single-

precision and double-precision floating point array computations and

addressing, and nested iteration constructs. This benchmark factors

a square matrix into a lower and upper triangular matrix with a

Gaussian elimination technique. The actual lower and upper matrix

decomposition algorithm is contained in a subprogram named "ludecm".

This subprogram, along with a data output subprogram named "prnary",

uses a variable-sized square matrix (2-dimensional array) with the

array dimensions passed to the subprogram as arguments. This

technique is not supported in the "C" language so an equivalent

method of calculating and using array element addresses from

Page 19

I

I

i

!

I

I

I

I

I

I

I

i
I

I

I

I

I

I

I

subscripts was used for the "C" version of this benchmark. Results

of benchmark runs showed superior performance from the "C" version,

so a FORTRAN version was implemented (tstrun5.for) that used the same

algorithm as the "C" language benchmark. The improved performance,

as shown in the benchmark summary, indicates that this addressing

algorithm is quicker in execution than using a double-subscripted

array. It should also be noted that the "C" double precision version

executes faster than the single precision version because "C" always

internally uses double precision, thus the single precision version

incurs additional time performing single-to-double and double-to-

single conversions.

D. Disk Write Timing Benchmark

A test of effective I/O throughput to disk was implemented to

determine the time required to write a series of large records to

disk, as would be typical in a real-time data acquisition

application. The timing test program (name: timtes) was designed to

write 300 records of 2,048 16-bit words (4,096 bytes) per record to

the disk. For the Motorola TeleSoft Ada and Motorola FORTRAN

benchmark, UNIX disk limitations resulted in a maximum of only 256

records that could be written. For these cases, the time recorded in

the benchmark summary was extrapolated from 250 record runs to

provide an equivalent time for 300 records. In addition, a compiler

error in release 3.0 of Alsys Ada for the SUN 3/260 (see a discussion

of compiler problems in Section IV of this report) limited the

maximum record size to only 2,047 16-bit words per record for that

version of the benchmark. Therefore, times recorded for SUN Alsys Ada

are based on 2,047 word records.

Page 20

I

I
I

I

I

I

I
I

I
I

I

I
I

I
I

I

i

I

I

In addition to this benchmark series, a MicroVAX-specific disk timing

analysis using VAX/VMS Record Management Services (RMS) options was

also performed. This was accomplished by developing two additional

versions of the disk write timing benchmark utilizing RMS system

services. The first version (named timtesblok) performed block mode

I/O directly to a disk file with no intermediate buffering, while the

second version (named timtesblokput) used RMS "put" calls for

buffered record mode I/O with large intermediate buffers. An RMS

buffer count of 22 was used for this benchmark (VMS quota limits

prevented greater buffering). Both versions use the "useropen"

subroutine method of accessing the required RMS data structures.

E. Ada Tasking

I. Ada Rendezvous Response Benchmark

This benchmark, (name: timetaskl), is an Ada two-task response time

test for the purpose of determining the overhead required by the

system for a rendezvous. A rendezvous is used to enable the

synchronization of the two tasks in order to give an idea of how fast

a task can respond to being started by another task. The design flow

chart for this benchmark is presented in Figure II-2. This

particular benchmark performs the rendezvous operation 1,000 times,

so that the execution time listed in the benchmark summary in Section

I can be divided by 1,000 to obtain the time for a single rendezvous.

2. Ada Two-Task Data Transfer Benchmark (Send/Receive)

This benchmark (name: adasend) is a send/receive data transfer test

that was designed to study the throughput available in a synchronized

Page 21

I

I
!

I

I

I

I
i

I
I

I

i

I

I
I

I

I

I

I

Task 1

write "start"

message

use START to
resume task 2 and
wait for task 2 to

finish _

no 1000
times

o

yes

write "stop"

message

exit

> Task 2

terminate_?,, yes

I no

use ACCEPT to

suspend and wait for
task 1 START

I

exit

Figure II-2 Two-Task Response Time Flowchart

Page 22

I

I

I
I

I

I
I

I

I
I

I

I
I

I
I

I

I

I

I

multi-task environment wherein one task generates data and transfers

it in memory to another task which then processes the data. The data

quantity was based on previous disk transfer tests of 300 transfers

of 2,048 16-bit words (4,096 bytes) each. The design flow chart for

this benchmark is presented in Figure II-3. This test was used as a

comparison with similar versions of the benchmark written in other

languages and using system service calls to perform similar

synchronized data transfer between tasks (or processes). See Section

II.F.I for a description of these system service versions. This

allowed a direct comparison of execution overhead of Ada tasking

services versus that of operating system services.

3. Ada Two-Task Data Transfer via Shared Disk File

Benchmark

This benchmark (name: adasend_disk) is based on the two task data

transfer (send/receive) benchmark but it transfers the data via a

shared disk file. This benchmark allows simultaneous, asynchronous

access to a disk file by the two tasks, each of which control reading

and writing with shared variables, thus testing the capabilities for

sharing variables as well as sharing disk files.

F. System Services

I. Send/Receive

In order to analyze the capability of an operating system to provide

multiple tasks with the means of transferring data and synchronizing

their access to that data, a send/receive two-task data transfer

benchmark utilizing system services was developed. This benchmark is

functionally identical to the Ada two-task data transfer benchmark

described under Ada tasking tests, except that separate operating

Page 23

I

!

I

!

I
I

I
i

I

I

I

I

I

I

Send

start receive

task

write "start"

message

fill 2048-word

data buffer

resume the

receive task

and wait for it

to finish checking

data_

no 300

times
o

yes

write "stop"

message

exit

Receive

suspend to
wait for

data

check data

to see if

correct

correct

data?

yes

/

\,-,.
resume the

send task

n o

--1
_,'r i te

error message

I

Figure II-3 Multi-task "Send/Receive" Data Transfer Design Flow Chart

Page 24

I

I
I

I
I

I

I

I
I

I

I

I
I
I

I

I
I

I

I

system "processes" are used in place of Ada "tasks". The benchmark

is designed to cause a "send" process to transfer 300 data buffers of

2,048 16-bit words each to a "receive" process, which checks the data

to verify that no data was lost, insuring that synchronization was

maintained. The flowchart for this benchmark is the same as for the

Ada version presented in Figure II-3. For the MicroVAX II, several

versions of the benchmark were developed, each testing a different

method of synchronizing the two processes or testing a different

method of transferring the data from one process to another. These

various versions were written in VAX FORTRAN to allow easiest access

to the system services and are named such that names begin with

"forsend" or "forrecv" for the send and receive processes,

respectively.

As a comparison, some versions were also developed for the SUN 3/260

workstation. These versions were written in "C" since that language

is the "native" language of the SUN's UNIX operating system. They

are named such that names begin with "csend" or crecy" for the send

and receive processes, respectively.

2. Process Creation

As part of the analysis of operating system services, a study of

process (or "task") creation response timing was performed by

implementing a process creation benchmark. For the MicroVAX II,

versions of this benchmark were developed for both subprocesses and

detached processes to determine the time required to create a

process. These programs were tested with various options such as

with/without error checking, with installed images, using process

termination mailboxes, etc., in an attempt to determine the minimum

time required.

Page 25

I
I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

The benchmark consists of a driver process (names beginning with

"rspnsl") that creates a second process (named "rspns2") that does

nothing but exit. The driver process waits while the 2nd process is

being created, then resumes control when the 2nd process terminates.

This action is repeated for 100 iterations to obtain a representative

time for a single process creation cycle. As can be seen from the

benchmark summary, the results of this benchmark series indicate that

the version most simple to program, but slowest executing, is

creation of a subprocess using the LIB$SPAWN call. The fastest

executing version, but more complex to program, was creation of a

detached process with the SYS$CREPRC call using a termination

mailbox, where the executable image for the detached process was made

an "installed" image with the Install utility. Analysis was also

performed for process images defined as foreign commands but this had

no affect on timing results.

3. Synchronization

Process synchronization techniques and timing results can be seen in

the send/receive benchmarks described previously. However, as a

direct comparison to the Ada rendezvous response time benchmark for

the MicroVAX II, a program was implemented that performed a system

service equivalent of the Ada rendezvous response benchmark. The

benchmark used the SYSSHIBER and SYSSWAKE service calls to accomplish

the synchronization, since these services were among the most time-

efficient, based on the results of the send/receive tests. It

consisted of two VMS processes (named timetaskl.for and

timetask2.for) wherein the first process "wakes" the second and

Page 26

I

I

I
I

I

I

I
I

I

I
I

I
I
I

I

I

I

I

I

"hibernates", then the 2nd process "wakes" the first and

"hibernates" This action is then repeated for 1,000 iterations to

provide a means of timing the synchronization. As can be seen from

the benchmark data, this method was slightly faster than the Ada

rendezvous time, .0012 seconds versus .0017 seconds (per

synchronization cycle).

Page 27

I

I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

III. TEST PROGRAMS

A. Multi-Process Timing Test

The purpose of this test was to verify correct process scheduling

when running multiple copies of a program. This was performed by

creating a "parent-child" process (name: proctim) wherein a "parent"

program created and initiated multiple copies of a "child" program.

Each of the "child" programs then ran independently and periodically

displayed a sequence number which identified each process as it

executed. By observing this sequence number over a period of time,

correct process scheduling could be verified. This test was

implemented using Ada tasking for all Ada compilers, "C" on the SUN

using UNIX system calls, and two versions using VAX/VMS system calls:

one for subprocesses (named proctim_sub) and one for detached

processes (named proctim_det). All tests showed correct execution

with no time skew.

B. Ada Multi-Tasking Scenario

The purpose of this test (name: taskl_and_task2) was to demonstrate

multi-tasking concurrency via the concurrent execution of two Ada

tasks. The first task starts the second task, then each task runs

independently and asychronously while periodically writing a message

to the terminal screen. A screen copy of the output from this program

as executed on the MicroVAX II is shown in Figure III-l.

Page 28

I
(

I(

I(

$.__,d._t.._skl ._r,dt.ssk.°..._,d._

$ acs link task. l

%ACS-I-CL_LINKING, Invokin 9 the VAX/VMS Linker
$ run t._sk.l

task.2 st._rtin9 time (.i
t._sk.2 running, time (i

task ° time (irunning,
task.2 runnin9, time (1
task. 1 startin 9 time (i
task. l runnin9, time (i

task. 1 runnins, time (i

taskl runr, in9, time (z

r, seconds from m

n seconds from m

r: seconds from m

r, seconds from m

r, seconds from m

n seconds from m

n seconds from ml

n seconds from ml

S',/_chro_; _ _arl o_')

zdni9ht) =

Idr,i9ht) =

Idr,i9ht) =

idr,i9ht) =

idnight) =

_dr,i9ht) =

dni9ht) =

dni9ht) =

task.l runnir,9, time (ir, seconds from mldr, i9ht) =
$

$

.$

$

No a¢

50451.5600

50451.6600

50451.7400

50451.8100

50451.8900

50451.9800

50452.0500

50452.2000

50452.3600

I

I-

$ a,:la task. l Bl'Id task.2.ad._

$ acs link taskl

%ACS-I-CL_LINKING, Invokin 9 the VAX/VMS Linker
$ fur, task. l

task.2 startin9 time (

task.2 rur,nin9, time (

task2 runnin9, time (

taskl startin9 time (

task. 1 rur,ning, time (

t.-._sk.1 runnin9, time (z

taskl runnin9, time (i

t_skl runnin9, time (I

in secor, ds Irrom m

in seconds from m

in secor, ds from m

In seconds from m

lrl seconds from m

n seconds froN_ m

r_ seconds from m

r, secor, ds from m

idr,ight) =

Idr,ight) =

idr,i9ht) =

idr,ight) =

idr,ight) =

idnight) =

Idni9ht) =

idni9ht) =

task.2 rur,r,ir,9, time (Ir, secor, ds from m dr,ight) =
$
$
$
$
$ ORIGINAI_ PAGE IS.
$ OF POOR QUALIT_

51716.5900

51716.7000

51716.7700

51716.8400

51716.9200

51716.9900

51717.2000
51717.2700

517_I_ .8500

I

I

I
I

I

I

$ ada taskl _r,d t._sk ° a,d._
$acs link. taskl

%ACS-I-CL LINKING, Invokin9 the VAX/VMS Linker
$ run taskl

task.2 startins time (

taskl startin 9 time (

task.2 running, time (

taskl running, time (

task2 runn_n9, time (

taskl runr, zn9, time <

task2 rur,nlng, time (

_r, seconds from midnight) =

in seconds from midr, ight) =

in seconds from midnight) =

_n secor, ds from midnight) =

zn seconds from mldni9ht) =

zr, seconds from mzdr, ight) =

Jr, seconds from m_dr, ight) =
t.'.-_skl r,Jnnlr,9, time (r, sec.or, ds from mldr, i9ht) =
t._sk.l runr, lr,9, time (In seconds from mldr, ight) =

$

$

$

$

$ Figure III-i Page 29
$

a

49309.2900

49309.4000

49314.4100

49314.4800

49319.4900

49319.5600

49324.5700

49324.6400
49329.7300

I

I

I
!

I

I
I

I

I

I
I
I

i

I

I

I

I

C. VAX High-Level Language Access to System Services

This test was used to demonstrate the VMS operating system's

capability for high-level language access to the system services. To

accomplish this, a test program implementing the Queued Input/Output

system service (QIO) was implemented on the MicroVAX II. This

program was written in VAX Ada (ttqio.ada), VAX FORTRAN (ttqio.for),

and in "C" (ttqio.c). The Ada program used the VAX Ada STARLET

package which is provided for access to system services from Ada.

The system services necessary for access to an operating

system's I/O devices directly through its I/O drivers are an

important consideration for real-time applications and this test

successfully demonstrated this capability. The design flow chart for

this benchmark is presented in Figure III-2. The screen copy of the

output from the Ada and "C" versions is also presented in Figure

III-2.

D. VAX Alarm Test

The VAX Alarm Test was a series of programs developed to test the

MicroVAX VMS timer system calls. Two basic versions of this alarm

test program were implemented. One version (testalarm) causes a

system event flag to be set after a specified time period. The other

version (testalarm ast) causes an AST routine to be executed after a

specified time period. This version was implemented in FORTRAN

(testalarm_ast.for), in "C" (testalarm_ast.c), and in Ada

(testalarm_ast.ada). The implementations of the "AST" version

verified that AST routines could be utilized from Ada and "C"

programs as well as from FORTRAN.

Page 30

PAGE IS

OF POOR QUALITY.

assign V&X l/o channel
to terminal with'assi|n

.system service

output status messaKe

¢
set up parameters for
qio system service

use qio system service
to output,buffer of
characters - "this is a test"
to terminal screen

4,
output status message

_ - ,c"S.',USEl_t'fHO:,NF-.TTOIO..ADA:66 65 lir,e__

I
:: ttqio

s ace. lir,_ tl.o]o sysms 9
%#_S-]-CL L!NV]NG, ir, vokir,9 thc VAX/VHS Linker
: " .', %toio

t: i¢lrt -_I= :jr"

%b!.'c.-'_'T._-c--Nri $- :L, r,c. rr,._' • _cco_,j _or r'_' _;-*_

Ir:a ¢ _ tect

. +..qi "

ttq f._, _;-'_ms 9

ttqio

.-yri: .c:!.?i:[_5.k_4E] ".7010." "4-

Ii = ._'2

I I J l'i

I STEM--S-NORMAL, r,o._m _ 1

- _ :s is a test

Iqlo stat,Js:

".3"iSTEM-S-NOT<MAL, r, cr- ma I

I" . st _t,Js :

,NONAME-S-NG_MAL, r,orm_l

I

I

I

i
i

I
I

I

I

!

SUC2m-:i'Jl com_,ietior,
- r

_.. _ sfu! • letior,="CC_ - CC In D

succes=.ful ccr_Dief, ln r,

ORIGINAL PAGE IS

OF POOR QUALITY,,

Figure 111-2 (2 of 2)

Page 32

I

I
I

I

I

I
I

I

I

I
I

I

I

I

I

I

I

E. Ada "delay" Test

The purpose of this test was to simulate periodic processing at a

fixed time interval in Ada. This was accomplished by implementing a

program (name: adadelay) to use the Ada "delay" statement and the

"calendar" package. Results of this test showed accurate timing for

the MicroVAX system, but inaccurate timing for the Motorola VM03

system. This was determined to be because the TeleSoft Ada compiler

does not use the system clock for the delay, but instead uses

simulated timing via software. The Alsys Ada compilers also produced

programs that executed with accurate timing.

F. Ada Task Order Test

The Ada Task Order test was used to determine the order of

task activation when multiple task declarations were made in Ada.

This test was devised such that four independent tasks were declared

in an Ada main program (name: task_order), then each task would

identify itself on the operator's terminal when it was activated.

Results from this test showed that for all Ada compilers tested

except VAX Ada, the tasks were activated in the order declared. For

the MicroVAX, tasks were activated in the reverse order of their

declaration.

G. Multi-Task Time-shared Execution Test

This test was developed to determine if there were deficiencies in a

real-time Ada application where one task must control the execution

Page 33

I

!
I

i

I

I
I

i

I

I
I
I

I

I

I

I

I

of another task. This test (name: task_exec, for the PC/AT:

tsk_exec) was devised where a master task attempts to schedule

execution of 3 sub-tasks such that each sub-task executes for a

specified time interval (5 seconds in the test case). The master

task accomplishes this with a reentrant "check" subprogram for

checking execution time. This test was run on the MicroVAX II, the

SUN 3/260, and the IBM PC/AT. Results of this test for the MicroVAX

showed an actual allocation of 5 seconds of execution time for each

task, using a 5 second delay in the check subprogram. For the PC/AT,

execution time was 5.0 to 5.1 seconds, while for the SUN, execution

time was 5.0 to 5.2 seconds. In addition, some anomalies were

encountered during the execution of this test for the SUN. These

were: I) Task 2 and Task 3 of the 3-task set would terminate if

screen output was held; 2) the test would only run in non-window

mode, it would not run with windows (SUNTOOLS) active.

Also, as a comparison, a version was developed for the PC/AT using

the Alsys Ada compiler's "time-slice" option. This version (name:

tstslice) resulted in an execution allocation of varying amounts from

5.6 seconds to 13.9 seconds for the test case timed. Since the time-

slice feature was not available for SUN Alsys Ada, this test could

not be run on that system.

Page 34

I

I

I
I

i

I
I

I

I
I

I

I
I

I
I

I

I

I

I

IV. SYSTEM AND COMPILER ANALYSIS

A. Ada Terminal Input Analysis

Some problems developing Ada programs that performed input from the

terminal keyboard led to an investigation of the details of Ada

terminal input on the MicroVAX and SUN systems. These problems

occurred when using the various forms of Ada GET and GET_LINE

procedures in certain combinations. The Ada Language Reference

Manual and other reference material contain little information on

this subject, therefore a series of experiments were performed to

determine the behavior of these procedures for each of the data

types. It was found that using GET for numeric (integer, float,

etc.) or enumerated types returned the valid input, but left the line

terminator as the next character in the "read" buffer, so that if a

GET_LINE of a string followed, the terminator caused the input to

immediately complete with no characters read. It is necessary to use

a SKIP_LINE call after the GET to bypass the line terminator. The

same problem occurs if invalid input is entered. The invalid input

characters remain in the "read" buffer after the exception generated

by the invalid input, and must be bypassed with a SKIP_LINE call to

prevent re-reading this invalid input during a retry attempt. An

example of the lack of information in this area is the fact that

Example 14.7 of the Ada Language Reference Manual has such an error

in its exception handling code. This example neglects to include a

SKIP_LINE call after a data error. If this example is implemented as

written, an endless loop will occur after a data error generated by

the input of leading non-alpha characters. A corrected version of

this example is shown in Figure IV-I.

Page 35

I

I

I
!

I

I

I
I

I

I
I

I
i

I

I

I
I

I

I

-- dialogue.ada - This is the example program given in 14.7 of the Ada LRM.

with text io; use text io;

procedure--dialogue is --

type color is (white, red, orange, yellow, green, blue, brown);

package color io is new enumeration io(enum => color);

package number_io is new integer_io(integer);

use color_io, number_io;

inventory : array (color) of integer := (20, 17, 43, I0, 28, 173, 87);
choice : color;

procedure enter color (selection : out color) is

begin

loop

begin

put ("color selected: ");

get (selection);
-- prompts user

-- accepts color typed, or

-- raises exception
return;

exception
when data error =>

put("Tnvalid color, try again.

new line(2);
w

") ;

--***

-- Note: The following line must be added to the example given in 14.7 of

-- the Ada LRM in order to correctly handle data errors generated by
-- the input of leading non-alpha characters.

skip_line;

end;

begin

end;

end loop;

-- completes execution of the block statement

-- repeats the block statement until color accepted

-- statements of dialogue

number io.default width := 5;

loop

enter color(choice); -- user types color and new line

set coi(5);

set--col(40);

new--line;

end loop;

end dialogue;

put(choice); put(" items available:");

put(inventory(choice)); -- default width is 5

Figure IV-I

Page 36

I
I

I

I
I

I

I

I
I

I
I

I
I

I

I

I

I

I

I

B. Foreign Routine Capability

The ability to call "foreign" routines from within MicroVAX Ada and

to call Ada routines from main programs in other VAX languages was

demonstrated by implementing VAX software to call both a FORTRAN

subroutine (innerprodl.for} and a FORTRAN function (innerprod.for}

from an Ada main program (mainl.ada and main.ada respectively), and

to call Ada functions from FORTRAN main programs (formain.for). Also

implemented was an Ada main program (main2.ada) that calls a FORTRAN

subroutine (sysmsg.for) which in turn calls a VAX system routine. A

VAX terminal screen copy of the results of the above is shown in

Figure IV-2.

The ability to call foreign routines from within Alsys Ada on the SUN

was demonstrated by implementing test cases similar to those used on

the DEC MicroVAX. The following cases were demonstrated:

o Calling a FORTRAN subroutine (innerprodl.f) from an

Ada procedure (mainl.ada).

o Calling a FORTRAN function (innerprod.f) from an

Ada procedure {main2.ada).

o Calling a UNIX system routine (fork) from an

Ada procedure (adafork.ada).

It should be noted that to accomplish the above mentioned cases,

special Alsys Ada "binder" options were required in addition to the

Ada source code pragmas. These binder options are documentated in the

appropriate source code listings.

Page 37

I
$

I '

$ ada mair,1 ,
$ for innerproJl
$ acs lir, k mainl inr, erprodl
ZACS-I-CL LINYING, Invokir, 3 the UAX/UMS Linker

$ run mainleturr, ed v._lue = 1.O0000E+02

! .
$ •

$ C_LL-UV6 FoRrRA_ fu,vc'rw,v F,¢o_ _-_A

$ ada main
$ for innerprod

I $ acs link main ir, nerprod
%ACS-I-CL LINI(ING, Invokir, 9 the VAX/VHS Linker

$ r u n ma ir,

I returned value = I.O0000E+02
$ _-_____L

r
I"

I"
B

i.
t
L

r

r
e

OP,/G_NAI_ pIGE

OE I_)OR QUALITY.

$

$

$ C,_L-,,vc, AO,_ 5o_ouT,,_r FRo_ FORT¢A_V$
$
$
$ for form3in
$ 3da nfind

$ acs linklr, omair, nfind formain _--us'_n_ AC_ L_K

%ACS-I-CL_LINVING, Invokin 9 the VAX/UMS Linker
$ run nfind

5
$
$

$ link. forn_air,,[horr, e.adaliL,]r, fir,,_ _- us;_ OCL LLkJ_
$ tun form_in

5

Figure IV-2 (I of 2)

Page 38

$
$
$ _ A_PL_ o_ U_ I_G ,_rDA To C,4LL

T _,4T CALL S A 5y_ TE_
$ _d._ main2

$ for sysms9

$ acs link main2 sysms9

ZACS-I-CL_LINFING, Invokin 3 the VAX/VMS Linker
$ run main2

Please enter system error number: lOS20

ZSYSTEM-F-EXENOLM, e:.:ceeded enqueue quota
$

$ run main2

Ple.sse enter system error number: -1

ZNONAME-?-NOHSG, Mess.sge number FFEEFFEE
$

$ run main2

Please enter system error number: I

%SYSTEM-S-NORMAL, r,orm_l successful completion

$

$

ORIGINAL PAGE IS

OE POOR QUALITY

Fo _T_A_ SuaRouT1_f

-,<ER vl e E

Figure IV-2 (2 of 2)

Page 39

I

I
I

I

I

I
I

I
I

I

I

I
I

I
I

I

I

I

I

C. I/O Loading Analysis

The effects of the "priority" pragma and the "time slice" pragma on

the order and frequency of the I/O from I/O-bound Ada tasks was

studied. This was implemented by having an Ada main program

(char.ada) declare two separate tasks (tasks pra and prb) which would

each output a single character to the terminal screen. For a proper

demonstration of the test, these two tasks need to alternate

execution. This test was implemented on the MicroVAX II, the SUN

3/260 and the IBM PC/AT. The test was first run without any pragmas,

in which case, the first task to be activated would output to the

screen continuously without ever allowing the other task to run.

This result was the same on all three systems. Then the test was run

with the "priority" pragma. Again, only the first task to be

activated would run, but in this case, the "priority" pragma allows

the programmer to select the task to be activated first, i.e., the

task with the higher priority would be activated first. This result

was also the same on all systems. Finally the test was run with the

"time slice" pragma. This allowed the output to the terminal to be

alternated. On the PC/AT the two tasks alternated execution

approximately in accordance to the time slice value. When run on the

MicroVAX, the execution was alternated on a byte by byte basis, i.e.,

the first task would output one character, then the other task would

output one character, then the first task would output again, etc.

Since the "time slice" pragma is not yet implemented on the SUN 3/260

system, this option could not be tested on that system.

Page 40

I

I

I

I

I
I

I

I
I

I

!

I
I

I

I

!

I

I

I

D. Multiple Process Loading Analysis

An analysis of the effects of loading and of different process

priority on compute-bound processes for the DEC MicroVAX II and the

SUN 3/260 was performed. This was accomplished by timing the

execution of the Ada prime number benchmark while varying the number

of computational processes running in the "background". The series

was repeated with the benchmark running at a high operating system

priority level. Graphs of the loading degradation are shown in

Figures IV-3 and IV-4 for the MicroVAX and the SUN, respectively.

This analysis was performed on the SUN both with and without the SUN

Window environment present. There was no detectable difference in

the time.

Also, an investigation of the loading effects of the SUN

window environment using the SUN Ada 2-task data transfer benchmark.

was performed. No degradation was observed for 1,2 or 3 windows

(with no processes active in the window).

E. Large Array Analysis

This analysis studied the MicroVMS operating systems support of very

large data arrays, both for size limitations and for loading

degradation, using Ada and FORTRAN. A graphic representation of

system loading (execution time) versus array size was generated that

showed points of discontinuity where loading increased dramatically

for a small increase in array size. This data is presented in

Figures IV-5 and IV-6. The large size of the executable image file

for the Ada version of this test was also noted.

Page 41

I

I

I

I
I

!

I
I

I

i

I

I
I
I

I

I
I

I

i

I_u_-_ _eLE [_o_ESS LoA%ING o_ M _t _.o VAX

"1";,_¢S,

5e.co,_&s

I)

L • • •

I # I q

L L .I 4-

No_b_r o_-"_a_kScou_4" P.._ess._

Figure IV-3

Page 42

c-ou^_'.

I
I

I

l

I
!

I
I

I

!

I

I
I

I

I

I

I

i
I

Ti_es
3

Secc_s

MULTIPLE PROC.ESS LoA-_b_NG o_

("c o,,,,,_,..._÷.o.,_.1 ,o ,-oc.,'s- s

Z

! , k i
o I % J 4

Nu_6er o'_ " Backsrov_" ProcesSes

5u_ 3/zeo

UNIx "n'it("

pClor;+_S _I _ -Zo

Noa_e S :

Figure IV-4

Page 43

(_,sv_rBnu_e.4-.

I

I

I
I

!

I

!
_,,,)

ORIGINAl] PAGE IS

OF POOR QUALITY:,

t.n
!

or,-

&

o,

"3 _

,#

t_

o3

o

(3

Page 44

I

I

I
I

I

I

I

I
i
I

I

I
Page 45

kC)
I

"- -"0

rP

_R

bc_

I
I

I

I
I

I

I
I

I

!

I

I
I

I

I

I

I
i

!

F. Ada Multiple Periodic Tasks with Calculation Task

To resolve questions concerning CPU usage during multi-tasking, an

Ada test program (procload.ada) consisting of multiple periodic tasks

interrupted by a calculation-intensive task was implemented. This

program (procload.ada) was constructed by inserting the code of the

prime number benchmark program (zprime.ada) into the body of the

multiple process timing test program (proctim.ada). The purpose of

this analysis was to determine if the time-slice mechanism would

allow the calculations of the prime number program to be performed

during the delays (idle time) of the multiple periodic tasks

program. The results of this analysis are presented as follows:

Ada Test Scenario - Multiple Periodic Tasks with Calculation Task

Alsys Ada - PC/AT

with times]ice=f0 msec

without timeslice

calculation task alone

322 see.

507 sec., tasks out of order

after calculation task runs

213 sec.

MicroVAX Ada

with timeslice:10 msec

without timeslice

calculation task alone

322 sec.

355 sec., tasks stayed in

order after calculation task

runs

55 sec.

This shows the need for a time-slice scheduling mechanism for all Ada

compilation systems.

Page 46

I

I
I

I

I

!
I

I

i

I
i

I
I

I

i
I

I

I

!

G. VAX/VMS Ada Analysis

While performing the benchmark study, it was found that the VMS Ada

compiler defaults to the g_float format when performing calculations

involving 64-bit (long_float) real numbers. However, if this is

changed with "pragma long_float (d_float)", the system then uses the

d_float format from that point on until it is changed back with

"pragma long_float (g_float)". It should also be noted that when

using the g_float format in conjunction with the math library this

format is implemented with software rather than hardware and

therefore executes much more slowly. Also, it was discovered that

d_float is incompatible with the VAX predefined instantiation of the

long_float math library (long_float_math_lib). This predefined

instantiation of the library is expecting g_float, therefore, in

order to use d_float a user instantiation of the library must be

made.

While performing the I/O loading analysis (see Section IV.C) it was

noted that the "priority" pragma and the "time slice" pragma

exhibited behavior that was not expected. The VAX allows priority

values in the range from 0 to 15 with a default priority value of 7.

The data gathered during the I/O loading analysis (char.ads)

indicates that although the VAX allows a priority value range of

0-15, the priority value chosen has no bearing on the actual

scheduling of the tasks. It appears that any priority values above

7 (8-]5) or any values below 7 (0-6) are treated as equal values,

i.e., a priority of 14 is the same as a priority of 8 or a priority

Page 47

I

I

I

I

I

I

I

I

I

I

I

I

!

I

I

I

I

I

I

of 6 is the same as a priority of 0. A task with the default

priority of 7 will be scheduled before any task with any priority

less than 7 and after any task with any priority greater than 7.

It was observed that the VAX time-slice pragma apparently causes

round robin scheduling to occur once the time specified in the pragma

has elapsed. This observation was based on the execution of

"char.ada" which has two Ada tasks, each of which have an infinite

loop in which a single character is output to the terminal screen.

W_thout any pragmas, the first task to run will run continuously

without allowing the second task to execute. With the time-slice

pragma set to 5 seconds, the first task to execute will run for

approximately 5 seconds, then the two tasks will alternate execution

with each task transmitting a single character to the terminal

screen. It would seem that each task should run for 5 seconds and

then release the CPU to the other task, instead of the much faster

scheduling behavior actually observed.

H. Alsys Ada (SUN) Analysis

During the performance of the benchmark study for the SUN

workstation, two Alsys Ada compiler anomalies were encountered.

These two problems were observed while implementing the disk write

timing benchmark (timtes) and the matrix manipulation benchmark

(runS). The error that occurred with the disk write timing benchmark

was that the maximum record size that could be successfully compiled

was only 2,047 16-bit words. Any larger record size (this benchmark

was designed for 2048-word records) would generate a fatal compiler

error. For the matrix manipulation benchmark, a run-time error would

Page 48

I

I
I

I

I
I

I

I
I

!

I

I
!

I
I

I

I
i

I

be generated when attempting to execute the long_float version of the

program. Test cases with minimum code were developed to demonstrate

the two anomalies, and these two test cases were presented to Alsys,

Inc. who acknowledged that they were indeed compiler errors.

According to Alsys, both are to be corrected in later compiler

releases. The test programs to demonstrate the errors that occurred

in the disk write timing benchmark and the matrix manipulation

benchmark are presented in Figures IV-7 and IV-8, respectively. (The

program names are testl.ada and test2.ada, respectively). Figure IV-

9 presents an intermediate step that is a "work around" to the

problem that occurred in the matrix manipulation benchmark.

In addition to the analysis of the compiler anomalies for the SUN

Alsys Ada compiler, an analysis of several compiler/binder options

were performed on a representative set of the benchmark programs for

the SUN. Table IV-I presents the results of this analysis.

It should be noted that the Alsys Ada compiler for the SUN does not

provide any form of a time-slice mechanism.

I. Alsys Ada (PC/AT) Analysis

During the course of the study, release 3.2 of the Alsys Ada compiler

for the PC/AT was received and analysis performed. This version

(3.2) of the compiler for the IBM PC/AT contains a math library, but

this math library is user supplied and is not supported by Alsys

Inc. To access this library the user must perform the following

steps:

Page 49

I

I
I

i

I

I
I

I
I

I

I

I
I

I
I

I

i

I

I

-- testl.ada - SUN 3/260 version. ALSYS Ada compiler. Demonstrates the

-- compiler error found in timtes.ada.

with sequential_io;

procedure testl is

type buffer is array(integer range 1..2048) of integer;

package buffer_io is new sequential_io(buffer);

use buffer_io;

data_file : buffer_io.file_type;

begin

create(file => data file, -- create a file.

name => "timetest.dat");

end testl;

Figure IV-7

Page 50

I

I

I
I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

-- test2.ada -- SUN 3/260 version. ALSYS Ada compiler. Demonstrates the

-- "PROGRAM ERROR" found in run5.ada.

procedure test2 is

type buf is array(integer range l..2,integer range 1..2) of long_float;

b : buf := ((1.0,i.0),

(2.0,3.0));

mult : long_float;

diag : integer := I;

row : integer := 2;

begin -- beginning of test2.

mult := b(diag,row) / b(diag, diag);

end test2; -- end of test2.

Figure IV-8

Page 51

i
I

I
I

I
i

I
I

i

I
I
I

I

I

I

i

I

-- test3.ada
mD

SUN 3/260 version. ALSYS Ada compiler. Demonstrates the
"work-around" for the "PROGRAM ERROR" found in run5.ada.

procedure test3 is

type buf is array(integer range l..2,integer range 1..2) of long_float;

b : buf := ((1.0,i.0),

(2.0,3.0));

mult : long_float;

diag : integer := i;

row : integer := 2;

templ: long_float;

temp2 : long_float;

begin -- beginning of test3.

templ := b(diag, row);

temp2 := b(diag, diag);

mult := templ / temp2;

end test3; -- end of test3.

Figure IV-9

Page 52

I
I

I

I
I

I

I
I
i

I

I

I
I

I

I

I
I

I

I

SUN Alsys Ada benchmark

Benchmark

All

Defaults

Sieve Prime Number .89

Floating point, sine function

float 4.4

long-float 9.6

Floating point, subroutine

(no math lib.) float 6.8

long-float i0.0

Matrix

analysis

68881

option

(Execution Time in Seconds)

Improve=>

(reduction checks=>

=>extensive) stack

.84 .66

4.0 4.0 3.9 3.9

7.0 9.4 8.8 6.3

6.8 6.8 7.4 7.2

8.0 10.0 10.8 8.9

float 13.9 13.3 12.5 12.3 11.6

long-float 15.8 16.3 14.4 13.9 14.4

Table IV- 1

Page 53

2-task data transfer 3.2 2.7 2.6

checks:>

stack

w/68881

I

I

I
I

I

I

I
I

i

I
!

I
!

I
I

I

I

I

I

o copy the math library package specification

(mathl.ads) and the math library package body

(mathl.adb) into the user directory. (note: these

reside in \alsys\math)

i compile both of the above into the user library,

and

• use the "bind" option

interface=(search=\alsyskmath\math.lib)

when building the executable•

Additional study of the PC/AT Alsys Ada compiler consisted of an

analysis of several compiler/binder options that were performed on a

representive set of the benchmark programs for the PC/AT. The

results of this analysis is presented in Table IV-2. This table also

presents the times obtained using the previous version (3.1) of the

Alsys Ada compiler• These times were obtained using all default

values.

Page 54

I

I
I

I
I

I

I

I
I

!

I

I

!

I

I

I

I

I

I

PC/AT Alsys Ada 3.2 Benchmark Analysis

All Tasking

Benchmark Defaults =No

Sieve Prime Number, execute 5.1

compile, bind I01.0

Floating point, sine function

float 8.7

long-float 9.9

Floating point, subroutine

(no math lib.) float 27.7

long-float 45.5

Matrix

(Execution Time in Seconds)

Checks Reduction Previous

=Stack = Partial Version

5.1 3.7 4.9 6.2

- - - 89.1

8.7 8.7 8.7 N/A

9.9 9.9 9.9 N/A

27.7 27.7 27.6 28.0

45.5 45.4 45.3 N/A

float 71.2 71.2 61.0 62.8 76.9

long-float 76.8 76.9 67.0 68.8 N/A

2-task data transfer 19.1 N/A 16.9 16.9 29.2

Rendezvous response 1.0 N/A 1.0 1.0 1.0

Disk write timing 13.4 13.4 13.4 13.4 15.5

Table IV-2

Page 55

I

I

I
I

I

I
I

I

I

I
I

I
I
I

I

I

I

I

I

V • SOURCE LISTINGS

This section contains program source file listings of the software

developed during the course of the study. Unless otherwise noted in

the comments at the beginning of the program or in the following

list, the programs listed are the versions of benchmarks and test

programs that were developed for, and executed on, the DEC MicroVAX

II system. The following source listings are included in this

section:

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22
23

24

25

26

27

28

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

zprime ada

zprime for

zprime c

zprime mar

zprime p (SUN)

zprime s (SUN)

fpatestsub.ada

fpatestsub.for

fpatestsub.c

speed_test.ada

speed_testsav.ada (long_float)

speed_test.for

speed_test.c

run5.ada & subprograms ludecm & prnary

run5.for & subroutines ludecm & prnary

run5.c & functions ludecm & prnary

tstrun5.for & subroutines ludecum & prnary
timtes.ada

timtes.for

timtes.c

timtes.p (SUN)
timtesblok.for

timtesblokput.for
timetaskl.ada

adasend.ada

adasend disk.ada

forsend.for/forrecv.for

forsendsavelfil.for/forrecvsavel.for

forsendsave6.for/forrecvsave6.for

csendl.c/crecvl.c (SUN)

csend2.c/crecv2.c (SUN)

csend3.c/crecv3.c (SUN)

rspnslsavel.for/rspns2.for

rspnslsave5qio.for

timetaskl.for/timetask2.for

proctim.c (SUN)

proctim_sub.for

proctim_det.for

proctiml.for

Page 56

I

I
I

I

I

I
I

I
I

I
I

I
I
I

I

I

I

I

I

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

proctim.ada

task1_and task2.ada

ttqio.ada

ttqio.for

ttqio.c

testalarm.for

testalarm ast.for

testalarm ast.ada

testalarm ast.c

adadelay.ada

task order.ada

task exec.ada

tstslice.ada (PC/AT)

main.ada

innerprod.for
mainl.ada

innerprodl.for

formain.for

nfind.ada

main2.ada

sysmsg.for

mainl.ada (SUN)

innerprodl.f (SUN)

main2.ada (SUN)

innerprod.f (SUN)

adafork.ada (SUN)

char.ada

procload.ada

Page 57

I

I
I

I

I
I

I

I
I

I

I

I
I

I
I

I

I

I

-- zprime.ada Eratosthenes Sieve Prime Number Program in VAX Ada.

with text io;

with integer_text_io;

use text_io,integer_text_io;

procedure zprime is

flags:array (integer range 0..8190) of boolean;

i,prime,k,count,iter:integer;

-- pragma optimize(time);

begin

put("10 iterations"); new_line;

for iter in I..I0 loop

count := 0;

flags := (0..8190 => TRUE);

for i in 0..8190 loop

if flags(i) then

prime := i + i + 3;

k := i + prime;

while k <= 8190 loop

flags(k) := FALSE;

k := k + prime;

end loop;

count := count + I;

-- put(count);put(prime);new_line;

end if;

end loop;

end loop;

put(count);put(" primes"); new_line;

end zprime;

--pragma suppress_all;

I

I
I

I

I
I

I

I
I

I

I

I
I
I

I

I

I

I

C

PROGRAM ZPRIME

zprime.for Eratosthenes Sieve Prime Number Program in VAX FORTRAN.

logical flags(8191)

integer i, iprime, k, icnt, iter

write(6,900)

900 format(' I0 iterations')

do 92 iter = i, i0
icnt = 0

do i0 i = 1,8191

10 flags(i) = .true.

do 91 i = 1,8191

if (flags(i) .eq. .false.) go to 91

iprime = i + i + 1

k = i + iprime

20 if(k .gt. 8191) go to 90

flags(k) = .false.

k = k + iprime

go to 20

90 icnt = icnt + 1

type *,icnt,iprime

91 continue

92 continue

write(6,901) icnt

901 format(Ix, i6,' primes')

end

I
I

I

I
I

I

I

I
I

I

I
I
I

I

I

I

I
I

/* zprime.c Eratosthenes Sieve Prime Number Program in C for MicroVAX II. */

#define TRUE 1

#define FALSE 0

#define SIZE 8191

char flags[SiZE];

main()

(

int i,prime,k,count,iter;

printf("10 iterations\n");

for(iter =l;iter <= i0; iter++)
{

count=0 ;

for(i = 0;i < SIZE; i++)

flags[i] = TRUE;

for(i = 0;i < SIZE; i++)

{

if (flags [i])
{

prime = i + i + 3;

k = i + prime;

while(k < SIZE)

{

flags[k] = FALSE;

k += prime;
}

++count ;

}
}

}

printf("%d primes\n", count) ;

I
I

I

I
I

I

I

; zprime.mar

.TITLE

.psect
FLAGS : .BLKW

DUMMY : •BLKW

- Eratosthenes Sieve Prime Number Program in VAX Macro.

ZPRIME

data,noexe
8192

1 ; THIS IS USED WITH THE MOVC5 INSTRUCTION

ttchan: .blkw 1

ttdesc: .long 205-105

.long i05

I05: .ascii /tt:/
205:

iostat: .blkq 1

strmsg: •ascii

stpmsg: .ascii

prmmsg: .ascii

quot: .long

rem: .long

"10 iterations "<13><10>

" primes"<13><10>

"prime= "<13><10>

I
I

I

I

I

•psect code, nowrt, exe

•ENTRY ZPRIME, ^M<R2, R3, R4, R5, R6, R7, R8, R9, RII>

$assign_s devnam=ttdesc,-
chan=ttchan

; set entry mask

;** write out the number of iterations (in R2) here

$qiow_s chan=ttchan,-

func=#io$_writevblk,-
iosb=iostat,-

pl=strmsg,-

p2=#16

MOVW # 1, R3 ; initialize iteration counter

MOVZBL #10,R2 ; set number of iterations

I
I

I

I

MOVZWL #8191,R4

CLRL R7

; do for R2 iterations

LI:

CLRW RII

pushr

MOVC5

popr

; set size of FLAGS array

; clear "k" index for FLAGS array

; clear count of number of primes found

#^m<r2,r3,r4> ; Save registers that MOVC5 uses

; set FLAGS array to all true (non-zero)

#0,DUMMY,#^XFF,#16384,FLAGS

#^m<r2,r3,r4> ; restore registers

I

I
I

L3:

S20:

MOVL #I, R5

TSTW FLAGS[R5]

BEQL S91

ADDW3 R5,R5,R6

INCW R6

ADDW3 R6,R5,R7

; reset array index and loop counter

; test FLAGS for prime (true for first time)

; calculate the value of the prime from

; its index, put in R6

; calculate the prime's first odd multiple

I

I
I

I

I
i

I

I
I

I

i

I
I

I
I

!

I

!

S90:

$91:

CMPW

BGTR

CLRW

ADDW2

BRB

R7, #8191
S90

FLAGS[R7]

R6,R7

S20

; set the odd multiple's flag value false

; calculate next odd multiple of the prime

INCW RII ; increment count of primes found

write out the value of the prime (in R6) here (for debug)

cvtwl r6,r0

movab prmmsg+7,r8
bsbw convert

$qiow_s chan=ttchan,-

func=#io$_writevblk,-

iosb=iostat,-

pl=prmmsg, -

p2=#14

ACBW R4, #I, R5, L3 ; all through FLAGS array?

ACBW R2,#1,R3,LI ; all through with number of iterations?

write out the number of primes found (in RII) here

cvtwl rll,r0

movab stpmsg, r8
bsbw convert

$qiow_s chan=ttchan,-

func=#io$ writevblk,-

iosb=iostat, -

pl=stpmsg,-

p2=#14

MOVL # 1, R0
RET

; set successful completion (VAX requires)

I
I

I

I

I
I

I

I

I

I
I

I

I

I
I

I

; Convert binary integer to ascii string, 5 digits, right-justified, zero-
; filled

; assume binary value is in work register r0

; and address of ascii string to receive converted
; integer is in register r8

convert:

; msg+0 byte
; clrl

ediv

addl2

cvtlb

movb

rl ;this instruction needs to be here,

;(it can't go after the ediv

; instruction either).

#10000,r0,quot,rem

#48,quot

quot,r0

r0,(r8)+

msg+l byte
movl

ediv

addl2

cvtlb

movb

rem, r0

#1000,r0,quot,rem

#48,quot

quot,r0

r0,(r8)+

msg+2 byte
movl

ediv

addl2

cvtlb

movb

rem, r0

#100,r0,quot,rem

#48,quot

quot,r0

r0,(r8)+

msg+3 byte
movl

ediv

addl2

cvtlb

movb

rem, r0

#10,r0,quot,rem

#48,quot

quot,r0
r0,(r8)+

msg+4 byte
addl2

cvtlb

movb

#48, rem

rem, r0
r0, (r8) +

rsb

.END ZPRIME

I
i

I

i

i
I

I

I
I

I

I

I
I

I
I

I

I

!

(* zprime.p *)

(* Eratosthenes Sieve Prime Number Program in PASCAL for the SUN. *)

program zprime(output);

const

size = 8190;

var

flags : array[0..size] of boolean;

i, prime, k, count, iter : integer;

begin (* ZPRIME *)

writeln(output, 'I0 iterations');

for iter := 1 to 10 do

begin

count := 0;

for i := 0 to size do

flags[i] := true;

for i := 0 to size do

if flags[i] then

begin

prime := i + i + 3;

k := i + prime;

while k <= size do

begin

flags[k] := false;

k := k + prime;

end;

count := count + I; (* Count of number of prime numbers *)

end;

end;

writeln(output,count," primes');

end. (* ZPRIME *)

i

I

I
I

I

I
I

I

I
I

I

I

I
!
I

I

I

I

I
I

I zprime.s

i Erathosthenes sieve prime number program in Motorola 68000 assembly.
i This is the version for the SUN.

.data

.co_ flags, 16382
rem: .word 0

quotient: .word 0

i Reserve 8191 words.

J Build output messages.

msgl: .asciz "i0 iterations\12"

msg2: .asciz " primes\12"

.text

pea msgl

jsr _printf

I Print "10 iterations".

i Jump to the print routine.

lea flags, a2
clrl d6

movw # 10, d5
clrl dl

movw #8191, d2

J Load beginning address of flags.

t Clear register d6.

i Upper loop counter for I-i0 loop.

l Lower loop counter for i-I0 loop.

i Upper loop counter for array flags.

ii: addw #1,dl
clrl d7

clrl d3

i Increment lower loop ctr for I-I0 loop
f Count.

I Lower loop ctr. for array flags.

J Set all 8191 cells of array flags to true (i.e. = 1).

lea flags, al J Load beginning addr. of flags.

12: addw #1,d3

movw #1,al@+

cmpw d3,d2

bgt 12

I Increment lower loop counter.
i Set to true. Point to next cell.

i See if the loop is complete.
I Loop until d2=d3 (8191).

f Array flags has been set to true. Continue.

clrl d3

lea flags, al
i Clear register d3. (set to zero).

i load beginning address of flags.

I Begin 1-8191 loop. Check each cell to see if = true (=i).

13: addw #i, d3

cmpw #I, al@+

blt 15

J Increment lower loop counter.
i See if this cell = true.

i Not true, check the next cell.

i This cell of flags array is true.

movw d3,d6

addw d3,d6

addw #1,d6

J d3 contains i.

i d6 now contains i + i.

I d6 now contains i + i + I.

i d6 contains PRIME and d4 contains K.

movw d3,d4

addw d6,d4
i k = i + prime.

I Loop while kit or = 8191.

I
i

I

14 : cmpw d4, d2
blt 17

movw

aslw

subw

d4,d0

#1,d0

#2,d0

I d2 contains the value 8191.

I k is now gt 8191.

Shift contents of dO left 1 bit.

Subtract 2 from contents of dO.

Set this cell to false.

movw

addw

bra

#0x00,a2@(0,d0:w)

d6,d4 i k : k + prime.

14 I Check the next location.

I K has become gt 8191.

17: addw

Increment count.

#1,d7 I Increment prime number counter.

15: cmpw d3,d2

bgt 13
I Compare lower loop ctr. to 8191.

i Continue loop. See if next cell true.

I

I
I

I Have looped 8191 times. See if outer loop has looped 10 times.

16: cmpw dl,d5

bgt ii
I Compare lower loop counter to i0.

I Execute next iteration of I-i0 loop.

I All i0 iterations of the outer loop have been completed, finished.

I Output the number of primes (count) that were found.

lea msg2,a4

jmp convert

I Load addr. of the return buffer.

I Convert to the ASCII equivalent.

I

I
i
I

I
I

I

I

I

I

back: pea msg2

jsr _printf

return: jsr exit

convert:

next:

I Print out the number of primes.
I Jump to the print routine.

I Exit the program.

This routine converts a binary value to its ASCII equivalent.

This routine assumes a maximum of five (5) characters.

On entry to this routine, register d7 contains the binary
value to be converted and register a4 contains the address

of the buffer where the ASCII equivalent is to be placed.

divs

movl

cmpw
ble

addw

movb

#10000,d7

d7,rem i Save the remainder from the division.

#0x00,d7 I See if this digit is zero.

next I If so, skip to the next digit.
#060,quotientl Add an ASCII zero to the answer.

quotient+l,a4@+

clrl

movw
divs

movl

addw

movb

d7

rem, d7

#1000,d7

d7,rem

#060,quotient

quotient+l,a4@+

clrl

movw

divs

movl

addw

movb

d7

rem, d7

#100,d7

d7,rem

#060,quotient

quotient+l,a4@+

clrl

movw

d7

rem, d7

I

I
I

I

I

I
I

I
I

I

I

I
I

I
I

I

I

!

t

divs

movl

addw

movb

addw

movb

jmp

#10,d7

d7,rem

#060,quotient

quotient+l,a4@+

#060,rem

rem+l,a4@+

back I Return to the caller.

I

i

!

i

I

I

I

I

I

!

I

I

I

I

I

I

I

I

-- fpatestsub.ada floating point test benchmark (w/subroutine), MicroVAX Ada.

with text io; use text io;

procedure fpatestsub is

package realnum is new float_io(float);
use realnum;

x : float := 100.0;

y : float := i00.0;
z : float := I00.0;

pragma optimize(time);

__***************************

procedure fpa(x: in out float;

y: in out float;
z: in out float) is

begin

y :=x/ x;

z := (y/x) + 1.0;

end fpa;
____***************************

begin

put ("start") ; new_line;

for i in i..i00000

fpa(x,y,z);

end loop;

loop

put("z = ") ;

end fpatest sub;

put(z,4,30,0); new line;

pragma suppress_all;

I

I
I

I

I
I

I

I
I

I

I

l
I
I

I

I

I

I

I

c fpatestsub.for -- floating point test benchmark in FORTRAN, MicroVAX

program fpatest

real*4 x,y,z

data x /i00./ y /I00./ z /i00./

type *,'start'

do i=i,I00000

call fpa(x,y,z)
enddo

type 900, z

900 format(' z = ',f34.30)

end

subroutine fpa (x,y, z)

real*4 x,y,z

y=x/x

z--y/x + i.
return

end

II.

I

I
I

I

I

I
I

I
I

I

I

I
I

I
I
I

I

I

I

/* fpatestsub.c -- floating point test benchmark in "C", MicroVAX II. */

main()

{
float x = 100.;

float y = 100.;

float z = 100.;

int i;

printf ("start\n");

for(i = 0; i < i00000; i++)

fpa(&x, &y, &z);

printf(" z = %34.30f\n",z);

fpa(x,y,z)

float *x, *y, *z;
{

*y = *x / *x;

*z = (*y / *x) + 1.0;
}

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I
I

I

iI

ml

speed_test.ada - floating point test benchmark (w/sine),
VAX Ada.

with text io; use text io;

with float_math_lib; use float_math_lib;

procedure speed_test is

package debug_io is new float_io(float);

use debug_io;

sum : float := 0.0;

x : float := 0.0;

begin

put ("i0000 iterations") ; new_line;

for i in i..i0000 loop

x := float(i);

sum := sum + 1.0 / (x + sin(x));
end loop;

put("done"); new line;

put(" sum = "); put(sum, 2,6,0); new_line; -- for debug

end speed_test;

-- pragma suppress_all;

I
I

I

I
I

I

I

I
I

I

I
I
I
I

I

I

I

I

_m

_D

speed_test sav. ada

speed_test, ada - floating point test benchmark (w/sine), VAX

Ada; special version for long_float d_float.

-- The VAX/VMS predefined instantiation of math lib for long_float

-- is not compatiable with the d float pragma a_d requires user

-- instantiation of math_lib for--long_float types.

pragma long_float(d_float);

with text io; use text io;

with math_lib;

procedure speed_testsav is

-- user instantation of math lib.

package my_math_lib is new math_lib(long_float);

use my_math_lib;

package debug_io is new float_io(long_float);

use debug_io;

sum : long_float := 0.0;

x : long_float := 0.0;

begin

put("10000 iterations") ; new line;

for i in I..I0000 loop

x := long_float(i);

sum := sum + 1.0 / (x + sin(x));
end loop;

put ("done") ; new_line;

put(" sum = "); put(sum, 2,6,0); new line; -- for debug

end speed_testsav;

-- pragma suppress_all;

I
I

I
I

I

I

I
I

I

I
I

I
I

I

I

I
I

I

I

c speed_test.for - floating point test benchmark (w/sine), MicroVAX II.

program speed_test

real*4 x, sum

c

write (5,700)

700 format(' I0000 iterations')

I0

do I0 i = I,I0000

x = i

sum = sum + 1.0 / (x + sin(x))

write (6,800)

800 format(' done')

write (5,900) sum

900 format(' sum=',f9.6)

for debug

end

I

i
I

I

I
I

I

I

I
I

I

I
I
I

I

I

I

I

I

/* speed_test.c - floating point test benchmark (w/sine), MicroVAX II. */

#include math

main()

{
int i;

float sum= 0., x = 0.;

printf(" i0000 iterations\n");

for(i = I; i <= i0000; i++)

{
x = i;

Sum = Sum + i. / (x + sin(x));

)

printf("done\n");

printf("sum = %f\n",sum);

I

I

I
i

I

I
I

I

I
I

I

I
I

I
I

I

I

I

-- run5.ada

m--

Matrix manipulation test benchmark, MicroVAX II.

This version uses separate compilation of subprograms

ludecm and prnary.

with text io; use text io;

procedure run5 is

type buf is array(integer range <>,integer range <>) of float;

n : integer := 4;

n2 : integer := 2;

a : buf (i..n,l..n)

al : buf(l..n,l..n);

b : buf(l..n2,1..n2)

:= ((-2.0,-4.0,-6.0,-8.0),

(2.0,5.0,8.0,11.0),

(1.0,5.0,10.0,15.0),

(5.0,6.0,5.0,5.0));

:= ((1.0,1.0),
(2.0,3.0));

bl : buf(l..n2,1..n2);

procedure ludecm(arrayl : buf;
number : integer;

array2 : in out buf) is separate;

procedure prnary(array2 : in out buf;

num: integer) is separate;

begin

put(" i0,000 iterations") ;

for i in 1..10000 loop

ludecm(a,n,al);

ludecm(b,n2,bl);

end loop;

put(" done!") ; new line;

-- beginning of run5.

new line;

prnary(a,n);

prnary(b,n2);

prnary(al,n);

prnary(bl,n2);

end run5; -- end of run5.

--pragma suppress_all;

I

I

I

I
I

I

I
I

I

I
I

I

I
I
I

I

I

I

i

-- ludecm, ada

separate (run5)

procedure ludecm(arrayl : buf; number : integer; array2 : in out buf) is

-- Lower and upper decomposition of square matrix
-- with Gaussian elimination.

-- Tests floating point computation, array addressing,
-- and nested iteration constructs.

mult : float;

diag : integer;

row : integer;

col : integer;

begin

array2 := arrayl;

-- beginning of ludecm.

for diag in l..number-I loop

for row in diag+l..number loop

mult := array2(diag, row) / array2(diag,diag);
array2(diag, row) := mult;

for col in diag+l..number loop

array2(col,row) := array2(col,row) - mult*array2(col,diag);
end loop;

end loop;

end loop;

end ludecm; -- end of ludecm.

--pragma suppress_all;

-- prnary.ada

with text_io; use text_io;

separate(run5)

procedure prnary(array2 : in out bur; num: integer) is

package buffer_io is new float io(float);
use buffer_io;

package new integer_io is new integer_io(integer);
use new_integer_io;

begin

new_line; new_line;

for i in l..num loop

for j in l..num loop

put ("array(") ; put (i,l) ,. put(" , ") ,.

put(j,l): put(")="); put(array2(i,j),3,0,O);
new line;

end loop;
end loop;

new_line;

end prnary;

--pragma suppress_all;

I
I

I
I

I

I

I
I

I
I

I

I
I

I
I

I

I

I

c run5. for

900

I0

901

- Matrix manipulation test benchmark, MicroVAX II.

program run5

real*4 a(4,4),b(2,2)

real*4 al (4,4) ,bl (2,2)

data a/-2.,-4.,-6.,-8.,

1 2., 5., 8.,11.,

2 i., 5.,10.,15.,

3 5., 6., 5., 5./

data b/l.,l.,

1 2.,3./

write (6,900)

format(' i0,000 iterations')

do I0 i--i,10000

call ludecm (a, 4, al)

call ludecm (b, 2,bl)

continue

write (6,901)

format(' done!')

call prnary (a, 4)

call prnary(al,4)

call prnary(b,2)

call prnary(bl,2)

end

I

I

I

I
I

I

I

I
I

I
I

I

i
I
I

I

I

I

I

subroutine ludecm (arrayl, n, array2)

c Lower and upper decomposition of square matrix
c with Gaussian elimination.

c Tests floating point computation, array addressing,

c and nested iteration constructs.

real*4 arrayl(n,n),mult,array2(n,n)

integer*2 diag, row, col

c

I0

9

copy input array to the working array

do 9 row= l,n

do 10 col=l,n

array2(col, row)=arrayl(col,row)
continue

continue

19

29

39

do 39 diag = l,n-I

do 29 row= diag+l,n

mult=array2(row,diag)/array2(diag,diag)

array2(row, diag)=mult

do 19 col= diag+l,n

array2(row, col)=array2(row, col)-mult*array2(diag, col)

continue

continue

continue

return

end

I

I
I

I
i

I

I

I
I

I
I

I

I
I

I

I

I
I

I

!

c

subroutine prnary(array,n)

subroutine to print out the array.

real*4 array(n,n)

integer*2 row, col

900

i0

20

do 20 row= l,n

do i0 col=l,n

write(6,9OO)col,row, array(col,row)

format(' array(',il,',',il,')=',f4.0)

continue

continue

901

write(6,901)

format(' ')

return

end

I
I

I

I

i
I

I

I
I

/* run5.c - Matrix manipulation test benchmark, MicroVAX II. */

float a[4] [4]=

{

};

float b[2] [2]=

{

};

{-2. ,-4 .,-6.,-8. },

{ 2., 5., 8.,11.},

{ i., 5.,10.,15.},

{ 5., 6., 5., 5.},

float al[4] [4],bi[2] [2];

main ()

{
int iter;

printf("10000 iterations\n");

for (iter=l; iter<=10000; ++iter)
{

ludecm(a,4,al);

ludecm(b,2,bl);

}

printf ("done! \n") ;

I

I

I
I

I

I

I

I

I

I

prnary(a,4);

prnary(b,2);

prnary(al,4);

prnary(bl,2);

ludecm (array, n, arrayl)

/* Lower and upper decomposition of square matrix */

/* with Gaussian elimination */

/* tests floating point computation, array addressing, */
/* and nested iteration constructs. */

int n;

/* Treat arrays as single dimensioned because "C" */

/* does not support variable 2-dimensioned arrays. */

float array[],arrayl[];
{

int diag, row, col, i;
float mult;

for(i=0; i<=((n-l)*n+(n-l)); i++)

arrayl[i] -- array[i];

for (diag=0; diag< (n-l) ; ++diag)
{

for(row--diag+l; row<n; ++row)
{

/*

/*
Use algorithm to compute array element

to simulate 2-dimensional array

mult = arrayl[diag*n+row]/arrayl[diag*n+diag];

*/
*/

I
I

I

I

I
!

I

I
I

I

I

I
I
I

I

i

I

I

I

arrayl[diag*n+row]=mult;

for(col=diag+l; col<n; ++col)

arrayl[col*n+row]=arrayl[col*n+row]-mult*arrayl[col*n+diag];

prnary (array, n)

/* Routine to print out the array. */

int n;

float array[];

{

int i, j ;

for(j=0; j<n; ++j)
{

for(i=0; i<n; ++i)

printf("array[%d] [%d]= %5.1f\n",j,i,array[j*n+i]);
}

printf("\n");

I

I

I
I

I

I

I
I

I

I

I

I
I

I

I
I

I

I

c tstrun5.for - Benchmark program to test multi-dimensioned

c arrays, in FORTRAN for the MicroVAX II.

program tstrun5

real*4 a(4,4),b(2,2)

real*4 al (4, 4),bl (2,2)

data a/-2.,-4.,-6.,-8.,

1 2., 5., 8.,11.,

2 I., 5.,10.,15.,

3 5., 6., 5., 5./

data b/l.,l.,

1 2.,3./

9OO

write (6,900)

format(' i0,000 iterations')

do i0 i=l,10000

call ludecm (a, 4, al)

call ludecm (b, 2, bl)

I0 continue

901

write(6,901)

format(' done!')

call prnary(a,4)

call prnary(al,4)

call prnary(b,2)

call prnary(bl,2)

end

I

I

I

I
I

I

I

I

I
I

I

I

I
I

I

I

I

I

I

subroutine ludecm(arrayl,n, array2)

c Lower and upper decomposition of square matrix
c with Gaussian elimination.

c Tests floating point computation, array addressing,

c and nested iteration constructs.

real*4 arrayl(1),mult,array2(1)

integer*2 diag, row, col

copy input array to the working array

do 9 i= l,n*n

array2(i)=arrayl(i)
continue

19

29

39

do 39 diag = l,n-i

do 29 row= diag+l,n

mult=array2(row+n*(diag-l))/array2(diag+n*(diag-l))

array2(row+n*(diag-l))=mult

1

do 19 col= diag+l,n

array2(row+n*(col-l))=array2(row+n*(col-l)) -
mult*array2(diag+n*(col-l))

continue

continue

continue

return

end

I

I

I
I

I

I

I

I
I

I
I

I
I

I

I

I

I
I

I

900

I0

20

901

subroutine prnary(array,n)

subroutine to print out the array.

real*4 array(n,n)

integer*2 row, col

do 20 row= l,n

do I0 col=l,n

write (6,900) col,row, array (col,row)

format(' array(',il,',',il,') =',f4.0)

continue

continue

write(6,901)

format(' ')

return

end

I
I

!

I
i

I

i

I
I

I

i

I
I
I

I

I

I
I

-- timtes.ada - Disk write timing benchmark, MicroVAX II.

with text io;

with calendar;

with sequential_io;

use text io;

use calendar;

procedure timtes is

type buffer is array(short_integer range 1..2048) of short_integer;

package buffer_io is new sequential_io(buffer);

use buffer_io;

package duration text io is new fixed io(duration);

use duration text io;

data_file : buffer_io.file_type;
ibuf : buffer;

i : short_integer;

tl : duration;

t2 : duration;

deltime : duration;

date : time;

pragma optimize(time);

begin -- start of the Ada program timtes.

new line;

put(" Program TIMTES - MicroVAX ADA version ");
new line;

for i in short_integer range 1..2048
ibuf(i) := i;

end loop;

loop

create(file => data file,

name => "timetest.dat",

form => "file;"

"best_try_contiguous yes;"
"allocation 2500;"

-- create a file.

-- the "form" parameter is

-- implementation dependent.
&

&

);

date := clock;

tl := seconds(date);

-- get current value of time.

-- get begin time (tl) in seconds.

for i in 1..300 loop

write(data_file, ibuf);

end loop;

-- write 300 records.

date := clock;

t2 := seconds(date);

-- get current value of time.

-- get end time (t2) in seconds.

deltime := t2 - tl; -- calculate the delta time in seconds.

close(data file); -- close the file.

put (" time difference = ");

put (deltime);
new line;

-- print out the delta time.

end timtes;

C timtes.for - Disk write timing benchmark in FORTRAN, MicroVAX II.

I
I

I
i

I

I

I
I

I

I

I
I

I
I

i

I

I

program timtes

integer*2 ibuf(2048)

integer i

real tl, delta

c

output the program header to crt.

write(6,100)

I00 format(/,' Program TIMTES - MicroVAX II FORTRAN version ',/)

load the buffer "ibuf".

do I0 i = 1,2048

ibuf(i) = i

I0 continue

open the disk file "timetest".

open(unit=4,file='timetest.dat',

1 status='unknown',form='unformatted,,access=,direct , ,

1 organization='sequential',

1 initialsize=2500,recordsize=1024)

tl = secnds(0.0) ! get the start time.

do 20 i = 1,300

write(4, rec=i) ibuf
20 continue

write 300 records to "timetest".

delta = secnds(tl) ! get the delta time (in seconds).

output the delta time to the crt.

write(6,200) delta

200 format(Ix,' time difference = ', f10.3,/)

close(unit=4) t close the disk file "timetest".

call exit

end
! exit the program.

I

I
I

I

I

I
I

!
I

I

I
I

I
I

!
I

I

/* timtes.c - Disk write timing benchmark, MicroVAX II */

#define NREC 300

#define N 4096

#define NW 2048

#define PMODE 0777

#include perror

/* Number of records to write. */

/* Number of bytes per record. */

/* Number of words per record. */

/* Mode with which to open file */

short int ibuf[NW], fd;

long tl, t2, delta, time();

main ()

{
int i, nwritten;

for(i = 0; i < NW; ++i)

ibuf[i] = i + i;
/* Initialize the write buffer. */

fd -- creat ("timetest. dat", PMODE, "mrs=4096", "rfm=fix", "alq--2400", "fop--ctg") ,.

if(fd !=-i)

{

tl = time((long *) 0); /* get starting time, seconds. */

for(i = I; i <= NREC; ++i) /* write NREC records.

nwritten = write(fd, ibuf, sizeof(ibuf));
*/

t2 = time((long *) 0); /* Get ending time, seconds.

delta = t2 -tl; /* Calculate the delta time.

printf(" nwritten= %d time diff= %id \n",nwritten,delta);
}
else

{

printf(" error creating the file \n");

perror("timtes");
}

*/
*/

I

I
I

!

I
I

I

I
I

I

I
I
I

I
I
m

I

I

(* timtes.p -- Disk write benchmark for SUN Pascal *)

program timtes (output,testdat);

(* A PASCAL program to test writing to a disk file *)

const

nrec = 300;

nw = 1024;
(* Number of records to write *)

(* Number of (32 bit) words per record *)

type
ibuf = record

data : array[l..nw] of integer;
end;

var

newdata : ibuf;

testdat : file of ibuf;

i : integer;

btime : integer;

etime : integer;
delta : real;

(* File for the test data *)

(* Loop counter *)

(* Begin time *)

(* End time *)

(* Delta time in seconds *)

procedure sync; external c;

begin (* TIMTES *)

rewrite(testdat,'testdat.tf');

for i := 1 to nw do

newdata.data[i] := i;

btime := wallclock;

testdat ^ := newdata;

for i := 1 to nrec do

begin

put(testdat);

(* Create the file for the test data *)

(* Get the current system time *)

(* Put the test data in the file *)

(*

end.

flush(testdat); *)

sync;
end;

etime := wallclock;

delta := etime - btime;

(* Write output buffered for the PASCAL

file testdat into the UNIX file *)

(* Call the "C" function "sync" *)

(* Get the current system time *)

(* Calculate delta time in seconds *)

(* Output the time to the screen *)

' Time for write = ' delta:7:3,' seconds');writeln(output,

(* TIMTES *)

I

I

I
I

I

I
I

I

I
I

i

I
I

I

I
I

I

I

c

c

c

c

c

c

c

99

timtesblok.for

program timtesblok

Fortran program to time writing to the disk.

integer*2 ibuf(2048)

integer*4 i

real*4 tl, delta

integer*4

integer*4

external

rabadr,forSrab,rmssts,rmsstv, sys$write,sysSput

uopen

uopen

output the program header to crt.

write(6,100)

i00 format(/,' Program TIMTESFOR - MicroVAX II FORTRAN version ',/)

load the buffer "ibuf".

do i0 i = 1,2048

ibuf(i) = i

10 continue

open the disk file "testfile"

open(unit=4,file='timetest.dat',

status='new',form='unformatted',

organization='sequential',

recordtype='fixed',

initialsize=2500,recl=1024,useropen=uopen,

access='sequential ' ,

err=99)

tl = secnds(0.0) w get the start time.

rabadr = for$rab(4)

write 300 records to "testfile".

call setrab(%val(rabadr),ibuf)

do 20 i = 1,300

ids = sys$write(%val(rabadr))

20 continue

delta = secnds(tl) ! get the delta time (in seconds).

output the delta time to the crt.

write(6,200) delta

200 format(Ix,' time difference = ', f10.3,/)

close (unit--4)

call exit

call errsns(,rmssts,rmsstv,,)

call sysmsg(rmssts)

call sysmsg (rmsstv)

end

! exit the program.

I

I
I

I

I

I
I

I
I

I

I

I
I
I

I

i

I

I

c uopen.for - user-open routine. Called in 'open' statement

integer*4 function uopen(fab,rab, lun)

include ' ($fabdef)'

include ' ($rabdef)'

record /fabdef/fab

record /rabdef/rab

integer*4 lun, chan, sys$create, sys$connect

fab.fab$b_fac = fab.fab$b_fac .or. fab$m_bio

uopen = sys$create(fab)

if(.not. uopen) return

uopen = sys$connect(rab)

if(.not. uopen) return

return

end

!set user-open bit

!open the file

subroutine setrab(rab,ibuf)

include ' ($rabdef)'

record /rabdef/rab

integer*2 ibuf(1)

rab.rab$w rsz = 4096

rab.rab$1_rbf = %loc(ibuf)

return

end

I c timtesblokput.for - Fortran program to time writing to the disk.

!

I
I

program timtesblok

integer*2 ibuf(2048)

integer*4 i

real*4 tl, delta

integer*4 rabadr,for$rab,rmssts,rmsstv, sys$put

integer*4 uopen

external uopen

c output the program header to crt.

write(6,100)

I00 format(/,' Program TIMTESFOR - MicroVAX II FORTRAN version ',/)

c load the buffer "ibuf".

do I0 i = 1,2048

ibuf(i) = i

i0 continue

I

I
I

I

c

c

open the disk file "testfile".

open(unit=4,file='timetest.dat',
1

1

1

1

1

1

status='new',form='unformatted',

organization='sequential',

recordtype='fixed',buffercount=22,

initialsize=2500,recl=1024,useropen=uopen,

access='sequential',
err=99)

tl = secnds(0.0) ! get the start time.

write 300 records to "testfile".

I
I

I

rabadr = for$rab(4)

call setrab(%val(rabadr),ibuf)

do 20 i = 1,300

ids -- sys$put (%val (rabadr))
20 continue

delta = secnds(tl) ! get the delta time (in seconds).

I

I

I

I

I

output the delta time to the crt.

write(6,200) delta

200 format(ix,' time difference = ', f10.3,/)

type *,'records written: ',i,' status:'

call sysmsg(ids)

close (unit=4)

99

call exit

call errsns(,rmssts,rmsstv,,)

call sysmsg(rmssts)

call sysmsg(rmsstv)
end

t exit the program.

I
I

I

I
I

I

I

I
I

I

I

I
!
I

I

I
I

I

I

uopen.for - user-open routine. Called in 'open' statement

integer*4 function uopen(fab, rab, lun)

include ' ($fabdef)'

include ' ($rabdef)'

record /fabdef/fab

record /rabdef/rab

integer*4 lun, chan,sys$create, sys$connect

fab.fab$b_fac = fab.fabSb_fac

uopen = sys$create(fab)

if(.not. uopen) return

uopen = sys$connect(rab)

if(.not. uopen) return

return

end

!set user-open bits

!open the file

subroutine setrab(rab,ibuf)

include ' ($rabdef)'

record /rabdef/rab

integer*2 ibuf(1)

rab.rabSw_rsz = 4096

rab.rab$1_rbf = %loc(ibuf)

return

end

I
I

I

I

I
I

I

I
I

I

I

I
I

I
I

I

I

I

-- timetaskl.ada - Rendezvous Response time benchmark, MicroVAX-II.

DD

D_

m_

This is a two-task response time test for the purpose

of determining the overhead required by the system for
a rendezvous. A rendezvous is used to enable the

synchronization of the two tasks in order to give an

idea of how fast a task can respond to being started
by another task.

with text io; use text io;

procedure timetaskl is

i : integer;

task timetask2 is

entry start;
end timetask2;

task body timetask2 is

begin

loop

select

accept start;
or

terminate;

end select;

end loop;

end timetask2;

begin

put ("start") ; new_line;

for i in 1..1000 loop
timetask2.start;

end loop;

-- start timetask2.

put("stop"); new line;

end timetaskl;

-- adasend.ada
--m

- Two-task synchronized data tansfer (send/receive)
benchmark, MicroVAX-II.

with text io; use text io;

procedure adasend is

type buffer is array(short_integer range 1..2048) of short_integer;

package debug_io is new integer_io(short_integer);

use debug_io;

k

J
1

ibuf

: short_integer;

: short_integer;

: short_integer := 0;

: short_integer;
: buffer;

task body adarecv is

begin -- beginning of adarecv.

!

!

!

!

!

!

loop -- loop forever.

j :-- j + i; -- increment loop counter.

select

accept start do

for 1 in short_integer range 1..2048 loop

if ibuf(1) /= j then

put(" data is incorrect for loop = ");

put(j); new line;
end if;

end loop;

end start;

or

terminate;

end select;

-- terminate adarecv.

!

!

!

end loop;

end adarecv; -- end of the receive task.

__***

begin -- beginning of adasend.

put(" The send task (Program ADASEND) is starting"); new_line; new_line;

I

I

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

for k in short_integer range i..300 loop

for i in short_integer range 1..2048
ibuf(i) := k;

end loop;

adarecv.start;

end loop;

put(" Program ADARECV is exiting");

end adasend;

loop

-- adasend disk.ada
m

--m

- Two-task data transfer (send/receive)

via shared disk file, MicroVAX-II.

with text io; use text io;

with direct io;

procedure adasend disk is

type buffer is array(short_integer range 1..2048) of short_integer;

package buffer io is new direct io(buffer);

use buffer io7

I

I
I

I

I

I
I

package debug_io is new integer_io(short_integer)7

use debug_io;

data_file : buffer_io.file_type;
ibuf : buffer;

i : short_integer;

k : buffer_io.positive_count7

j : short_integer := 0;

1 : short_integer;

recno : buffer_io.positive_count;

numrec : short_integer := 0;

pragma volatile(numrec);

pragma volatile(j);

task adarecv_disk;

task body adarecv disk is

ibuf : buffer;

begin -- beginning of adarecv.

loop

j := j + 17

-- loop forever.

-- increment loop counter.

I

I
I

I

I

I

while numrec < j

delay 0.017

end loop;

loop

read(data_file,ibuf,buffer_io.positive_count(j));

for 1 in short_integer range 1..2048 loop

if ibuf(1) /= j then

put(" data is incorrect for loop = ");

put(j); new line;

end if;

end loop;

end loop;

exception
when buffer io.end error =>

put("adarecv_disk: end_error"); new line(2);

when buffer io.use error =>

put("adarecv_disk: use_error"); new line(2)7

I

I

I

I

I

I

I

I

I

I

!

I

I

!

I

I

I

I

when buffer io.data error =>

put ("adarecv_disk : data_error") ; new line(2);

when others =>

put("adarecv disk: unknown error"); new line(2);

end adarecv disk; -- end of the receive task.

begin -- beginning of adasend.

create(file => data file,

name => "dua2:[user.horne]test.dat",

form => "file;" &

"best_try_contiguous yes;" &

"allocation 2500;");

new line;

put("ADASEND_DISK is starting"); new line(2);

for k in buffer_io.positive_count range 1..300 loop

recno := k;

for i in short_integer range 1..2048

ibuf(i) := short_integer (k);

end loop;

loop

write(data_file, ibuf,recno);

numrec := short_integer(k);

end loop;

while j <= numrec loop

delay 0.01;
if adarecv disk'terminated then

new line(2);

put_"ADARECV_DISK task terminated abnormally");

new line;

put("read error on record number "); put(j);
exit;

end if;

end loop;

new line;

if j > numrec then

put("ADARECV DISK task terminated normally"); new line;

put (numrec) ; put (" records were read") ; new line (2);
abort adarecv disk;

end if;

end adasend disk;

I
I

I

I

!
I

I

I
I

I

!

I
I

I

I

I

I
I

c

c

forsend.for - Send task for 2-task synchronized data transfer.

-- event flag/installed shareable common version

program forsend

integer*2 ibuf,iflag

integer*2 i,k

integer*4

external cli$m_nowait

common/comglb/ibuf(2048),iflag

ids = sys$ascefc(%val(64),'efcluster',,)

ispawn, ids,sysSascefc, sysSsetef, sys$waitfr,sys$clref

i assign ef cluster

c

c

c

c

20

c

c

c

c

30

c

c

start up the receive task to run concurrently

ispawn=%loc(cliSm_nowait)

call lib$spawn('run forrecv',,,ispawn,'forrecv',ipid)

let receive task start

call wait('0 ::3.0',ids)

-- beginning of forsend

type *,' The send task (Program FORSEND) is starting'

do 30 k=l,300

fill buffer

do 20 i=I,2048

ibuf(i)=k

continue

resume the receive task to process the data in ibuf

(resume forrecv)

ids = sys$setef(%val(64))

suspend this task while forrecv processes

(suspend forsend)

ids = sys$waitfr(%val(65))

ids = sys$clref(%val(65))

continue

type *,' Program FORSEND is exiting'

type *,ibuf,k

call sys$delprc(ipid,)

end

I
I

!
I

I
I

I

I
I

I

!

I
I
I

I

I
i

I

I

c wait.for

subroutine wait(itim, ids)

integer*4 sys$waitfr,sysSsetimr, sys$bintim

integer*4 ids, ibintim

character*(*) itim

I000

ids=sys$bintim(itim, ibintim)

if(.not, ids)go to i000

ids=sys$setimr(%val(1),ibintim,,)

if(.not, ids)go to i000

ids=sys$waitfr(%val(1))

if(.not, ids)go to i000

return

end

I

i
I

i

I
I

I

I

I
!

I
!

I

I
i

I

I

I

\

c

c

comglb.for -- Used to define the installed shareable image

for the global common in some send/receive tests.

block data

integer*2 ibuf, iflag

common/comglb/ibuf(2048),iflag

data ibuf/2048*O/,iflag/O/

end

!
I

I
I

I

I

I
I

I

I

I

I
I

I

I

i

I

I

I

! comglb.opt

' Options file for linking comglb global common
!

duaO:[sysO.syslib]comglb/share
!

I
I

I
I

I

I

I
I

I

I
I

I
I

I

I

I
I

i

I

$! comglbins.com -- Command file to install 'comglb' global common.

$ set noverify

$! Modules using this common should be linked thus:

$! $ link module,comglb/opt

$! where file comglb.opt contains:

$! comglb/share

$ set verify

$ install delete duaO:[sysO.syslib]comglb

$ install create duaO:[sysO.syslib]comglb.exe;I/share/write

$! finished installing comglb

$ set noverify

I
I

I
I

I

I

$!comglbbld.com --Command file to compile, link, install 'comglb' global common.
$ set noverify

$! Modules using this common should be linked thus:

$! $ link module,comglb/opt

$! where file comglb.opt contains:

$! comglb/share

$ set verify

$ for comglb

$ link/share comglb

$ purge comglb.obj,comglb.exe

$ install delete dua0:[sys0.syslib]comglb

$ delete dua0:[sys0.syslib]comglb.exe;*

$ copy comglb.exe dua0:[sys0.syslib]comglb.exe;l

$ install create dua0:[sys0.syslib]comglb.exe;I/share/write

$! WARNING! Programs using comglb must now be re-linked!

$! finished building comglb

$ set noverify

I
I

I

i
I

I

I

I
I

I

I

I
I

I

I
i

I

I

c

c

c

10

c

C

c

20

c

c

3O

C

forrecv.for - Receive task for 2-task synchronized data transfer.

-- event flag/installed shareable common version

program forrecv

integer*2 ibuf,iflag

integer*2 j,l

integer*4 ids,sysSascefc, sysSwaitfr,sys$clref,sysSsetef

common/comglb/ibuf(2048),iflag

ids = sys$ascefc(%val(64),'efcluster',,)

j=0

t assign ef cluster

continue

j=j+l

loop forever

suspend this task until send task has some data

(suspend forrecv)

ids = sys$waitfr(%val(64))

ids = sys$clref(%val(64))

check data to see if correct

do 20 1=1,2048

if(ibuf(1) .ne. j)then

type *,'data is incorrect for loop = ',j
end if

continue

resume the send task to send more data

(resume forsend)

ids = sys$setef(%val(65))

go to I0

continue

end

terminate

I

I

I
I

i

I
I

c forsendsavelfil.for

c forsend.for -- hiber/wake/'global section-file' version

program forsend

integer*2 ibuf,iflag

integer*2 i,k

integer*4

integer*4

integer*4

ispawn,ids

sys$crmpsc,ipid, chan

inadr(2),retadr(2),secflags

include ' ($secdef) '

external cli$m nowait

common/comglb/ibuf(2048),iflag

common/ufo/chan

integer*4 ufo create

external ufo create

iflag=0

open the section file

open(unit=4, file='comglb.tmp',

1 status='new ', initialsize=9,

1 useropen= ufo_create,err=30)
close(4)

secflags : sec$m_gbl .or. sec$m_dzro .or. sec$m_wrt

inadr(1) = %1oc(ibuf(1))

inadr(2) = %1oc(iflag)

create and map to global section

ids=sys$crmpsc(inadr,retadr,,

1 %val (secflags),

1 'glbsec' ,,, %val (chan)

1 ,,,,)

c start up the receive task to run concurrently
ispawn=%loc(cli$m_nowait)

call lib$spawn('run forrecvsavel',,,ispawn,'forrecv',ipid)

c -- beginning of forsend

type *,' The send task (Program FORSEND) is starting'

do 30 k=l,300

I

I

I

20

fill buffer

do 20 i=I,2048

ibuf(i)=k

continue

resume the receive task to process the data in ibuf

(resume forrecv)

call sysSwake(ipid,)

I
I

I
I

I

I
I

I
I

I

I

I
I

I

I
I

I
I

i

c

c

30

suspend this task while forrecv processes

(suspend forsend)

call sys$hiber()

continue

type *,' Program FORSEND is exiting'

call sysSdelprc(ipid,)

end

I
I

I
I

I

I
I

I

I

!
I

I
i

I

I
I

I

I
i

c ufo_create.for - user-open routine. Called in 'open' statement

integer function ufo create(fab,rab,lun)

include ' ($fabdef)'

include ' ($rabdef)'

record /fabdef/fab

record /rabdef/rab

integer*4 lun, chan,ids,sys$create

common /ufo/chan !common for passing the channel

fab.fab$1_fop = fab.fab$1_fop .or. fab$m_ufo

ids = sys$create(fab)

chan = fab.fab$1_stv

ufo create = ids

end

!set user-open bit

!open the file

!get channel from fab

!set status

I

I
I

I
I

I

I

I
I

I

I

I
I
I

I

I

I
i

i

! glbsec.opt -- options file for linking the 'mapping' programs
I

T this is used to page-align the common block 'comglb'
!

psect_attr = comglb,PAGE
!

I

I

I

I

I

I

I

I
I

I

I

I
I
I

I

I

i
I

C forrecvsavel.for

c forrecv.for -- hiber/wake/'global section-file' version

program forrecv

integer*2 ibuf, iflag

integer*2 j,l

integer*4 ids

integer*4 sys$hiber,sys$wake, sys$crmpsc,sys$mgblsc

integer*4 inadr(2),retadr(2),secflags

include ' ($secdef)'

c

I0

c

c

common/comglb/ibuf(2048),iflag

secflags = secSm wrt

inadr(1) = %loc([buf(1))

inadr(2) = %loc(iflag)

map to the global section called 'glbsec'

ids=sys$mgblsc(inadr,retadr,,

1 %val(secflags),

'glbsec',,)1

j=0

continue

j=j+l

loop forever (we'll stop it with ctrl-y)

suspend this task until send task has some data

(suspend forrecv)

call sys$hiber()

20

check data to see if correct

do 20 1=1,2048

if(ibuf(1) .ne. j)then

type *,'data is incorrect for loop = '
end if

continue

,j

resume the send task to send more data

(resume forsend)

call sys$wake(,'HORNE')

go to 10

30

c

continue

end

terminate

i

I

I

I
I

I
I

I

I
I

I

I

i
I
I

I

I

I

I

I

c

c

c

c

c

c

c

2O

c

c

30

40

5O

98

forsendsave6.for

forsend.for -- shared disk file version

program forsend

integer*2 ibuf(2048)

integer*2 i,k

integer*4 ispawn,ids

integer*4 ipid

integer*2 irecno

integer*2 j !loop counter for receive task

external cli$m_nowait

common/comglb/irecno, j

irecno = 0

create and open file

open(unit=4,file='timetest.dat;l',status='new',

1 form='unformatted',access='direct',

1 organization='sequential',recordsize=1024,

1 initialsize=2800,shared, err=99)

start up the receive task to run concurrently

ispawn=%loc(cliSm_nowait)

call libSspawn('run forrecvsave6',,,ispawn,'forrecv',ipid)

let receive task start

call libSwait(%ref(l.0))

-- beginning of forsend

type *,' The send task (Program FORSEND) is starting'

do 30 k=l,300 !write 300 records to disk file

do 20 i=I,2048

ibuf(i)=k

continue

fill buffer

write to file

write(4,rec=k,err=98)ibuf

update record number in common
irecno = irecno+l

continue

!wait for recv task to finish

if(j .gt. 300)go to 50

call libSwait(%ref(0.01))

go to 40

type *,' Program FORSEND is exiting'

call sysSdelprc(ipid,)

go to 60

type *,'forsend: write error on file'

I
I

I

I
I

I

I

I
I

I

I

I
I

I

I

I
I

I

I

99

60

go to 60

type *,'forsend: open error on file'

continue

end

I
I °

I

I
I

I

I

I Cl 0

! c
15

I

I c
16

I c

I

| 2o

| 30

| 98

40

I c

forrecvsave6.for

forrecv.for -- shared disk file version

program forrecv

integer*2 ibuf(2048)

integer*2 j,l

integer*4 ids

integer*2 irecno

integer*2 itest

common/comglb/irecno, j

j=O

open file

open(unit=4,file='timetest.dat;l',status='old',

1 form='unformatted',access='direct',

1 organization='sequential',

1 recordsize=lO24,shared, err=99)

continue

j=j+l

loop forever

!set j to next record to read

wait for a record to be written

if(irecno .ge. j)then

go to 16
else

call lib$wait(%ref(O.Ol))
endif

go to 15

read file

read(4,rec=j,err=98)ibuf

check data to see if correct

do 20 1=1,2048

if(ibuf(1) .ne. j)then

type *,'data is incorrect for loop = ',j
end if

continue

go to I0

continue

go to 40

type *,'recv: read error, record no. ',j

go to 40

type *,'recv: open error'

continue

terminate

end

I
I

I
I

I

I

I
I

I

I
I

I
I

I

I
I

I

I
I

/* csendl.c send/receive benchmark for UNIX "C" on the Sun

/* This version uses shared memory and signals */

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/signal.h>

key_t keyshm=200;
char *shmaddr=0;

char *shmat();

int shmid;

char crecv[7] = "crecvl";

char *argv;

int func();

int sig2flag=0;

main ()

{
int i, k, pid;
char *shmbuf;

short int *ibuf;

extern int errno;

./

printf("create shm seg\n");

/* create shared memory segment */

if((shmid = shmget(keyshm, 4096,IPC CREATI0666)) == -i)

perror ("shmget");

printf("attach shm seg\n");

/* attach shared memory segment */

if((shmbuf = shmat(shmid, shmaddr, 0666)) == (char *) (-i))

perror("shmat");

ibuf = (short int *) (shmbuf);

/* start up the receive task to run concurrently */

printf("fork the recv process\n");
if((pid = fork()) == 0)

execv(crecv, argv);

printf("pid= %d\n", pid);

perror ("execv") ;

signal(SIGUSR2, func); /* set up to catch resume signal from recv*/

sleep(5);

/* -- beginning of csend */

printf("The send task (Program CSEND) is starting\n");

for(k=l; k<=300; ++k)

{
/* fill buffer */

for(i=0; i<2048; ++i)

ibuf[i] = k;

/*resume the receive task to process the data in ibuf*/

/*(resume crecv)*/

usleep(100000); /* delay to make sure recv is paused */

kill(pid, SIGUSRl);

/*suspend this task while crecv processes */

I
I

I
I

I

I

I
I

I

I
I

I
I

I

I
I

I

I

/*(suspend csend)*/

/* printf("send: suspending waiting for recv to check loop %d\n",k);

if(sig2flag != 1)

pause () ;

sig2flag = 0;

/* printf("send: resumed, fill buffer for loop %d\n", (k+l)); */

}
printf("program CSEND is exiting\n");

kill (pid, 9) ;

func(signum, sig_code, scp)

int signum, sig_code;
struct sigcontext *scp;

{

I*

}

sig2flag = i;

printf("sigusr2 caught, sig2flag
return;

./

*/

I

I
I

I

/* crecvl.c send/receive benchmark for UNIX "C" on the Sun

/* This version uses shared memory and signals */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/signal.h>

key_t keyshm=200;
char *shmaddr=0;

char *shmat();

int shmid;

*/

I
I

I

I
I

I

I

int siglflag=0;

main()

{
int j, m, pid, func();
char *shmbuf;

short int *ibuf;

/* get shared memory segment */

if((shmid = shmget(keyshm, 4096,0666)) == -I)

perror("shmget");

/* attach shared memory segment */

if((shmbuf = shmat(shmid, shmaddr,0666)) == (char *) (-i))

perror ("shmat") ;

ibuf = (short int *)(shmbuf);

pid = getppid();

/* loop forever (we'll stop it externally) */

signal(SIGUSRl,func); /* set up to catch resume signal from send */

I
!
I

/*

/*

for(j--l; ; ++j)

{
/* suspend this task until send task has some data*/

/*(suspend crecv)*/

printf("recv: now suspending waiting for loop %d\n",j);

if(siglflag != 1)

pause();

siglflag = 0;

printf("recv: resumed, check data for loop %d\n",j); */

,/

I

I

I

I

/* check data to see if correct */

for(m=0; m<2048; ++m)

{
if(ibuf[m] !-- j)

{
printf("data is incorrect for loop = %d\n",j);

printf(" ibuf[%d] = %dkn",m, ibuf[m]);

)
)

/*(resume csend)*/

usleep (I00000) ;

kill (pid, SIGUSR2) ;

/* resume the send task to send more data */

/* delay to make sure send is paused */

/* terminate */

I

I
I

I

I
I

I

I
I

I

I

I
I

I

I

I

I
I

I

func(signum, sig_code, scp)

int signum, sig_code;

struct sigcontext *scp;

{
siglflag = i;

return;

}

I

I
I

I

I
I

I

I
I

I

I

I
I

I

I

I
I

I

I

/* csend2.c send/receive benchmark for UNIX "C" on the Sun

/* This version uses shared memory and semaphores */

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

key_t keyshm=200, keysem=300;
char *shmaddr=0;

char *shmat();

int shmid, semid, semval;

struct sembuf Iock0={0,-I,SEM_UNDO};

struct sembuf unlock0={0, I,SEM_UNDO};

struct sembuf IockI={0,-I,SEM_UNDO};

struct sembuf unlockl={0, I,SEM_UNDO};

char crecv[7] = "crecv2";

char *argv;

main ()

{
int i, k, pid;

char *shmbuf;

short int *ibuf;

extern int errno;

*/

printf("create shm seg\n");

/* create shared memory segment */

if((shmid = shmget(keyshm, 4096,IPC CREATI0666)) --= -I)

per for ("send: shmget") ;

printf("attach shm seg\n");

/* attach shared memory segment */

if((shmbuf = shmat(shmid, shmaddr,0666)) == (char *) (-I))

perror ("send: shmat") ;

ibuf = (short int *) (shmbuf);

if ((semid = semget (keysem, 2, 066611PC_CREAT JIPC_EXCL)) == -I)
perror ("s end: semget");

if ((semval = semctl (semid, 0,GETVAL)) == -I)

perror ("send: semctl") ;

printf ("semval=%d\n", semval) ;

/* start up the receive task to run concurrently */

printf("fork the recv process\n");

if((pid -- fork()) =-- 0)

execv(crecv, argv);

printf ("pid= %d\n", pid) ;

perror ("send: execv");

sleep(5);

/* -- beginning of csend */

printf("The send task (Program CSEND) is starting\n");
for(k=l; k<=300; ++k)

{
/* fill buffer */

for(i=0; i<2048; ++i)

I
I

I

I
I

I

I

I
I

I

I

I
!
I

I

I

I

I

/W

/*

/*

/*

ibuf[i] = k;

/*resume the receive task to process the data in ibuf*/
usleep (i00000) ;

/*(resume crecv)*/

if(semop(semid,&unlockl, l) == -I)

perror ("send: semop") ;

if ((semval = semctl (semid, I, GETVAL)) == -i)

perror ("send: semctl");

printf("send: semvall after unlock-%d\n",semval); ./

/*suspend this task while crecv processes */
/*(suspend csend)*/

printf("send: suspending waiting for recv to check loop %d\n",k);
if(semop(semid,&lock0,1) == -I)

perror ("send: semop") ;

printf("send: resumed, fill buffer for loop %d\n", (k+l)); */

if((semval -- semctl(semid, 0,GETVAL)) == -I)

perror ("send: semctl") ;

printf("send: semval after lock=%dkn",semval) ; ,/

,/

}
printf("program CSEND is exiting\n");
kill (pid, 9) ;

semctl (semid, 0, IPC_RMID) ;

I
I

I

/* crecv2.c send/receive benchmark for UNIX "C" on the Sun */

/* This version uses shared memory and semaphores */

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

i

I
I

I

key_t keyshm=200, keysem=300;
char *shmaddr=0;

char *shmat();

int shmid, semid, semval;

struct sembuf Iock0={0,-I,SEM_UNDO};

struct sembuf unlock0={0, I,SEM_UNDO};

struct sembuf IockI={0,-I,SEM_UNDO};

struct sembuf unlockl={0, I,SEM_UNDO};

main()

{
int j, m, pid;

char *shmbuf;

short int *ibuf;

printf("recv: starting recv\n") ;

/* get shared memory segment

if((shmid -- shmget(keyshm, 4096, 0666)) =-- -I)

perror ("shmget") ;

,/

I

I

I
I
I

i

i

I
I

I

/*

/*

/* attach shared memory segment */

if((shmbuf -- shmat(shmid, shmaddr, 0666)) == (char *) (-i))

perror ("shmat") ;

ibuf = (short int *) (shmbuf);

pid = getppid();

semid=semget (keysem, 2, 0) ;

semval = semctl(semid, 0,GETVAL);

printf("recv: semval = %d\n",semval);

/* loop forever (we'll stop it externally) */

printf("recv: start recv loop\n");

for(j=l; ; ++j)
{

/*(suspend crecv)*/

printf("recv: now suspending waiting for loop %d\n",j);

semop (semid, &lockl, i) ;

semval = semctl (semid, I, GETVAL) ;

printf("recv: resumed, check data for loop %d\n",j);

printf("recv: semvall after lock = %d\n",semval);

/* suspend this task until send task has some data*/

*/

*/

/* check data to see if correct */

for(m--0; m<2048; ++m) /* check each word of array */
{

if(ibuf[m] != j)

{
printf("data is incorrect for loop-- %d\n",j);

printf(" ibuf[%d] = %d\n",m, ibuf[m]);

}
if(m < 3 I J m > 2045)

I

I

!
I

I

I

I
I

I

I

I

I
I

I

I
/

I

I

I

/*

/*

}

}

printf("m = %d, ibuf[m] = %d\n",m, ibuf[m]); */

/* resume the send task to send more data */

usleep(lO0000);

/*(resume csend)*/

semop(semid,&unlockO,l);

semval = semctl(semid, O,GETVAL);

printf("recv: semval after unlock=%d\n",semval); */

/* terminate */

I

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

/* csend3.c

/*
send/receive benchmark for UNIX "C" on the Sun

This version uses shared memory for data and

a shared memory flag for synchronization */

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

key_t keyshm=200;
char *shmaddr=0;

char *shmat();

int shmid;

char crecv[7] = "crecv3";

char *argv;

main ()

{
int i, k, pid;
char *shmbuf;

short int *ibuf;

extern int errno;

./

printf("create shm seg\n");

/* create shared memory segment */

if((shmid = shmget(keyshm, 8192,IPC CREATJ0666)) == -I)

perror ("send :shmget") ;

printf("attach shm seg\n");

/* attach shared memory segment */

if((shmbuf = shmat(shmid, shmaddr, 0666)) == (char *) (-i))

perror ("send: shmat") ;

ibuf = (short int *) (shmbuf);

ibuf[2048] = 0; /* initialize flag for synchronization*/

/*

/* start up the receive task to run concurrently */

printf("fork the recv process\n");
if((pid = fork()) == 0)

execv (crecv, argv) ;

printf("pid= %d\n", pid);

perror ("send: execv");

sleep(5);

/* -- beginning of csend */

printf("The send task (Program CSEND) is starting\n");

for(k=l; k<=300; ++k)

{
/* fill buffer */

for(i=0; i<2048; ++i)

ibuf[i] = k;

/*resume the receive task to process the data in ibuf*/

/*(resume crecv)*/

printf("send: resume recv to process loop %dkn",k); */

ibuf[2048] -- I;

/*suspend this task while crecv processes */

I

I

!
I

I

I
I

I

I
I

i

I
I

I

I
i

I

I

I

/*(suspend csend)*/

printf("send: suspending waiting for recv to check loop %d\n",k); */
while(ibuf[2048] != 0)

usleep(10000); /* delay a minimum amount */

/* NOTE: takes the same time for 1 to i0000 usec.*/

printf("send: resumed, fill buffer for loop %d\n",k); */

}
printf("program CSEND is exiting\n");
kill(pid, 9);

I

I

I

I

I

I

I

I

I

i

I

I

I

!

I

I
I

!

I

/* crecv3.c

/*
send/receive benchmark for UNIX "C" on the Sun

This version uses shared memory for data and

a shared memory flag for synchronization */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

key_t keyshm=200;
char *shmaddr=0;

char *shmat();

int shmid;

main()

{
int j, m, pid;

char *shmbuf;

short int *ibuf;

*/

printf("recv: starting recv\n") ;

/* get shared memory segment */

if((shmid = shmget(keyshm, 8192,0666)) == -i)

perror ("shmget") ;

/* attach shared memory segment */

if((shmbuf -- shmat(shmid, shmaddr,0666)) =-- (char *) (-I))

perror ("shmat") ;

ibuf = (short int *)(shmbuf);

pid = getppid() ;

/*

/*

/*

/* loop forever (we'll stop it externally) */

printf("recv: start recv loop\n");

for(j=l; ; ++j)

{
/* suspend this task until send task has some data*/

/*(suspend crecy)*/

printf("recv: now suspending waiting for loop %d\n",j); */

while(ibuf[2048] != 1)

usleep(10000); /* delay a minimum amount */

/* NOTE: takes the same time for 1 to i0000 usec.*/

printf("recv: resumed, check data for loop %d\n",j); */

/* check data to see if correct */

for(m--0; m<2048; ++m) /* check each word of array */

{
if(ibuf[m] != j)

{
printf("data is incorrect for loop = %d\n",j);

printf(" ibuf[%d] -- %d\n",m, ibuf[m]);

}

/* resume the send task to send more data */

printf("recv: now resume the send process\n"); */
/*(resume csend)*/

ibuf[2048] = 0;

I
I

I

I

I

I
I

I

I
I

i
I
I

I
I

I
I

I

I

/* terminate */

I

!

i
!

I

I

I
I

I

I

I
I
!

I

I
1

I

I

c rspnslsavel.for

c rspnsl.for -- Process creation benchmark

c -- This version uses spawn to create a subprocess

c!!!!

900

program rspnsl

integer*4 ids, lib$spawn
character*6 name

data name/'rspns2'/

write(6,900)

format(' start response time test ')

c

c!!!!

c!!!!

do I0 i=l,100

spawn subprocess and wait for completion

ids = lib$spawn('run rspns2',,,,name)

ids = lib$spawn('rspns2',,,,name)

call lib$spawn('run rspns2',,,,name)

t spawn w/run

t spawn as command

! spawn w/run

c!!!! if(.not, ids) call sysmsg(ids) t This code for debug

i0 continue

910
write (6,910)

format(' end response time test ')

end

I

!

I

!

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

c rspns2.for

program rspns2

end

I
I

I

I
I

I
I

I
I

I

I
I

I
I

I

I

I
I

I

c rspnslsave5qio.for - Process creation timing test for MicroVAX II.

c

c

c

c

c

c

900

c

i0

!!!!

!901

910

99

I00

This version uses the termination mailbox method to

wait for completion of the created process. The

created process is the original version of rspns2.
The termination mailbox is read with a QIO call.

program rspnsl

include ' ($prcdef)'

include ' ($dvidef)'

include ' ($iodef)'

integer*4 ids,sys$creprc, sys$crembx,lib$getdvi, sys$qiow
integer*4 pid, ichan, mbxunt

integer*2 itrmsg(512)

integer*2 iostat(4)
character*6 name

data name/'rspns2'/

ids = sys$crembx(,ichan,,,,,'mbx')

if(.not, ids) go to 99

create termination mailbox

get device unit no. for mbx

ids = lib$getdvi(dvi$ unit,ichan,,mbxunt,,)

if(.not, ids) go to 99

write (6,900)

format(' start response time test ')

do I0 i=l,100

create detached process with term. mailbox

ids = sys$creprc(pid,'dual: [user.horne]rspns2.exe',

,,name, %val (4),,

%val (mbxunt), %val (prc$m_detach))

if(.not, ids) go to 99

!read to wait for termination

ids = sys$qiow(, %val(ichan), %val(io$_readvblk),

iostat,,,itrmsg,%val(8),,,,)

continue

type 901, (itrmsg(k),k=l,42)

format(4(x, 10z6.4/), (x,2z6.4))

write(6,910)

format(' end response time test ')

if(.not, itrmsg(3))call sysmsg(itrmsg(3))

go to i00

call sysmsg(ids)
continue

! This code for debug

end

i

!

!
I

I

I

I
I

I

I
I

!

I
I

I
I

II

I

c timetaskl.for -- hiber/wake version

program timetaskl

integer*2 i

integer*4 ispawn,ids

integer*4 ipid

integer*4 sysShiber, sysSwake

external cli$m_nowait

c

c

start up task2 to run concurrently

ispawn=%loc(cliSm_nowait)
call lib$spawn('run timetask2',,,ispawn,'timtk2',ipid)

wait while task2 loads

call lib$wait(%ref(2.0))

type *,' taskl is starting'

do 30 i=i,1000

resume task2

(resume task2)

call sys$wake (ipid,)

c

c

3O

40

suspend this task while task2 runs

(suspend taskl)

call sys$hiber()

continue

type *,' taskl is exiting'

call sys$delprc(ipid,)

go to 40

continue

end

!

c

c

i0

c

c

c

c

3O

c

timetask2.for -- hiber/wake version

program timetask2

integer*4 ids

integer*4 sysShiber,sysSwake

loop forever

continue

suspend this task until send taskl starts it

(suspend task2)

call sysShiber()

resume taskl

(resume taskl)

call sysSwake(,'HORNE')

go to I0

continue

end

terminate

/* proctim.c -- parent-child process timing test */

#define DELAY 30

int i;

int j;

main ()

{
for(i=l; i<=20; ++i)

{
sleep (i) ;

if(fork() == 0)

{
for (; ;)

{
printf("i'm task no. %d \n",i);

sleep (DELAY) ;

}
exit () ;

c proctim_sub.for

c proctim.for -- process timing test, using VAX/VMSsubprocesses.
c This is the "parent" process, the "child" processes
c are copies of proctiml.for.

program proctim

integer*4

include
integer*4
character*6
external

ids

' ($prcdef)'
pid, sys$creprc, libSspawn
prcnam /'prcn__'/

cli$m_nowait

do 50 i=i,20

if(i .it. i0)then

prcnam(5:5) = '0'

prcnam(6:6) = char(48+i)
else

if(i .it. 20)then

prcnam(5:5) = 'i'

prcnam(6:6) = char(48+i-10)
else

prcnam(5:5) = '2'

prcnam(6:6) = char(48+i-20)
endif

endif

ids = lib$spawn('run dual:[user.horne]proctiml',,,

%loc(cli$m_nowait),prcnam)

50

call lib$wait(%ref(l.0))

continue

call lib$wait(%ref(200.0))

end

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

c proctim_det.for

c proctim.for -- process timing test, detached process version.

c This is the "parent" process, the "child"

c processes are copies of proctiml.for.

program proctim

integer*4 ids

include ' ($dvidef)'
character*16 devnam

integer*2 ilen

integer*4 lib$getdvi

include

integer*4

character*6

' ($prcdef)'

pid, sys$creprc

prcnam /'prcn'/

!get equivalence name for sys$input device

ids = lib$getdvi(dvi$_devnam,,'sys$input',,devnam, ilen)

do 50 i=i,24

!start off 24 "child" processes

if(i .it. I0)then

prcnam(5:5) = '0'

prcnam(6:6) = char(48+i)
else

if(i .it. 20)then

prcnam(5:5) = 'I'

prcnam(6:6) = char(48+i-10)
else

prcnam(5:5) = '2'

prcnam(6:6) = char(48+i-20)
endif

endif

50

!create process as detached process
ids = sys$creprc(pid,'dual: [user.horne]proctiml',

devnam(l:ilen),devnam(l:ilen),devnam(l:ilen),

prcnam,%val(10),,,%val(prc$m_detach))

call lib$wait(%ref(l.0))

continue

end

!

I

I

i

I

I

I

I

I

I

I

i

I

I
I

i

I

I

C proctiml.for -- "child" process for process timing test,
c can be run as a detached process by

c proctim_det.for or a subprocess by

c proctim_sub.for

program proctiml

integer*4 ids

include

integer*4
character*15

' ($jpidef)'

lib$getjpi, jlen

prcnam

ids = lib$getjpi(jpi$_prcnam,,,,prcnam, jlen)

i00

do 100 i=i,10

type *,'I''m task no. ',prcnam(5:6)

call libSwait(%ref(60.O))
continue

end

I

!

I
I

I

I

I
I
I

I

I

I
I
I

I

I

I

I

-- proctim.ada

--D

with text_io;

Parent-Child Process timing test, program to start

20 "child" processes, letting them run independently.

Ada version for the MicroVAX II, uses Ada tasks

instead of operating system processes.

use text io;

procedure proctim is

idum : integer;

package my_io is new integer_io(integer);

use my_io;

task type test_run is

entry start;

end test_run;

-- This is the "child" task. Mul-

-- tiple copies will be started.

bunch of runs : array(l..20) of test_run; -- declare 20 tasks.

task body test run is

iname : integer := 0;

begin

accept start;
iname := idum;

for j in 1..5 loop

put("I'm task ");

new line;

delay 30.0;

end loop;
end test run;

put(iname);

begin

-- This is the "parent" task.

for i in 1..20 loop
idum := i;

bunch of runs(i).start;

delay 1.0;

end loop;

end proctim;

I
I

I

-- taskl_and_task2.ada - an Ada program to test multi-tasking.

m_

_m

This program alternates execution between two

tasks. There is no synchronization between the

two tasks, only delay statements to test

alternating execution.

with text io, calendar;

use text__o, calendar;

I
I

I

procedure taskl is

package duration text io is new fixed io(duration);

use duration_text_io;

tO : duration;

tl : duration;

-- time for taskl.

-- time for task2.

task task2;

I

I
I

task body task2 is

begin -- beginning of task2.

tl := seconds(clock);

put(" task2 starting time (in seconds from midnight) = ");
put(tl); new line;

m

delay 5.0; -- delay for 5 seconds.

tl := seconds(clock); -- get the time in seconds.

put(" task2 running, time (in seconds from midnight) = ");

put(tl); new_line; -- print out the current time.

I

I
I

I

delay 5.0; -- delay for 5 seconds.

tl := seconds(clock); -- get the time in seconds.

put(" task2 running, time (in seconds from midnight) = ");

put(tl); new_line; -- print out the current time.

delay 5.0; -- delay for 5 seconds.

tl := seconds(clock); -- get the time in seconds.

put(" task2 running, time (in seconds from midnight) = ");

put(tl); new_line; -- print out the current time.

end task2;

I

I
I

I

begin -- beginning of taskl.

tO := seconds(clock);

put(" taskl starting time (in seconds from midnight) = ");

put(tO); new line;

delay 5.0; -- delay for 5 seconds.

t0 := seconds(clock); -- get the time in seconds.

put(" taskl running, time (in seconds from midnight) = ");

put(tO); new_line; -- print out the current time.

delay 5.0; -- delay for 5 seconds.

tO := seconds(clock);

put(" taskl running, time (in seconds from midnight) = ");

put(tO); new_line; -- print out the current time.

I

I

I

I

I

I

I
I

I

I

I
I
I

I

I

I

I
I

delay 5.0; -- delay for 5 seconds.

tO := seconds(clock);

put(" taskl running, time (in seconds from midnight) = ");

put(tO); new_line; -- print out the current time.

delay 5.0; -- delay for 5 seconds.

tO := seconds(clock);

put(" taskl running, time (in seconds from midnight) = ");

put(tO); new_line; -- print out the current time.

end taskl;

-- ttqio.ada - program to test QIO system service from Ada for

terminal output, MicroVAX II.

with text io; use text io;

with starlet; use starlet; -- used for system calls.

with system; use system; -- used by starlet.

with condition_handling7 use condition_handling;-- used for status returns.
with unchecked conversion; -- used for type conversion.

procedure ttqio is

I

I
I

I

i

I

I

m_

m_

_n

_m

M_

_m

up

The purpose of this function is to convert a value

from the type of "address" to the type of

"unsigned_longword" so that the value can be used

by the QIO system service routine.

function convert addr to longword is new unchecked_conversion (

address, unsigned_longword);

The purpose of this function is to convert a value

from the type of "iosb_type" to the type of

"cond value_type" so that it can be used by the

routine sysmsg.

function convert status is new unchecked conversion (

-- iosb_type, cond_value_type);

-- make declarations necessary
-- to access FORTRAN routine to

-- output system messages.

procedure sysmsg(ids : cond_value_type);

pragma interface(fortran, sysmsg)7

pragma import_procedure(sysmsg,mechanism=>reference);

I
I

I

I
I

I

I

i

buffer

adrbuf

ttchan
ids

iostat

cond stat

ifunc

qiopl

qiop2

-- declare variables.

: constant string := "this is a test";

: address;

: channel_type;

: cond_value_type;

: iosb_type;

: cond_value_type;

-- I/O channel.

-- system service status.

-- QIO returned status.

-- QIO function code.

: function_code type := io_writepblk;

: unsigned_longword7 -- QIO buffer address.

: unsigned_longword := 14; -- QIO byte count.

begin

assign(ids,"tt:",ttchan) ;
new line (2) 7

put,line(" assign status:") ;

sysmsg(ids);

new line (2) 7

-- call assign system service.

adrbuf := buffer'address;

qio pl := convert_addr to longword (adrbuf)7

-- call QIO system service.

qiow(status=>ids,chan=>ttchan, fu nc=>ifunc,

iosb=>iostat,pl=>qio_pl,p2=>qio,p2);

new line;

I
I

I
I

I

I
I

I

I

I
I

I
I

i

I

i
i

I

I

put_line(" qio status:");

sysmsg(ids);
new line;

put_line(" i/o status:");

cond_stat := convert_status (iostat);

sysmsg(cond stat);

end ttqio;

I

!

I

c

c
ttqio, for - program to test system services for terminal output,

MicroVAX II.

program ttqio

character*20

integer*4

integer*2

buffer

ids,sysSassign, sysSqiow, libSgetjpi, libSgetdvi
iosb(4),ttchan

character*15 prcnam
character*16 devnam

integer*2 ilen

integer*4 jlen

data buffer/'this is a test: no.l'/

I

I

I

I

900

include

include

include

include

write(5,900)

' ($iodef)'

' ($ssdef)'

' ($jpidef)'

' ($dvidef)'

format(' ttqio performs 2 qio writes to terminal',/)

ids=lib$getjpi(jpi$_prcnam,,,,prcnam, jlen)

type *,'process name = ',prcnam(l:jlen)

ids=lib$getdvi(dvi$_devnam,,'sys$input',,devnam, ilen)

type *,'sys$input name = ',devnam(l:ilen)

I

I

I

!

I

call lib$wait(%ref(4.0))

ids=sys$assign('tt:',ttchan,,)

type *,' ttchan= ',ttchan,' assign status:'
call sysmsg(ids)

type *,' '

!"type" tests write

!to sys$output

ids=sys$qiow (, %val (ttchan), %val (IO$_WRITEPBLK), iosb,,,
1 %ref (buffer) ,%val (20) ,, ,,)

type *,' qio status:'

call sysmsg(ids)

type *,'i/o status:'

call sysmsg(iosb(1))

I

I

I

call lib$wait(%ref(30.0)) !wait i0 sec.

ids=sys$assign ('tt :', ttchan,,)

type *,' ttchan= ',ttchan,' assign status:'
call sysmsg (ids)

type *, ' '

buffer (20:20)--' 2'

ids=sys$qiow (,%val (ttchan), %val (I05 WRITEPBLK), iosb,,,
1 • %ref (buffer), %val (20),,,,) --

type *,' qio status:'

call sysmsg (ids)

type *,'i/o status:'

I

I

I
I

I

I
I

I

I

I
I

I
!

!

I
I

!

I

I

901

call sysmsg(iosb(1))

type *,'ttqio exiting!'

type 901

format(' $ ' $)t

end

/* ttqio, c Program to test QIO system services from "C"

for terminal output. NOTE: To link, use the

following command:

link ttqio, sysmsg

where sysmsg is a FORTRAN subroutine to output

system messages.
*/

#include stdio

#include iodef

/* UNIX 'Standard I/O'

Definitions.

/* I/O Functions Codes

Definitions.

*I

*I

#include descrip /* VMS Descriptor Definitions. */

char buffer[15] -- "this is a test"; /* test output message. */

int SYS$ASSIGN(),SYS$QIOW();

main ()

{
short ttchan,iosb[4];

int ids,p2=14 ;

/* declaration of the system

services (not required).

/*-

*/

I

I
struct dscSdescriptor_s

char *name = "tt:";

/* Information necessary to pass

the argument for the device

name by Descriptor. */

name desc; /* Name the descriptor */

/* Define device name. *!

i

I
!

I

/* length of name WITHOUT
null terminator.

name_desc.dsc$w_length = strlen(name);

./

name_desc.dsc$a_pointer = name; /* Put address of shortened

string in descriptor. */

/*-

/* String descriptor class

name_desc.dscSb_dtype = DSC$K_CLASS_S;

/* Data type: ASCII string

name_desc.dscSb_dtype = DSC$K_DTYPE_T;

*/

*/

........ */

I /* Call assign system service */

ids=SYS$ASSIGN(&name_desc,&ttchan, 0,0);

I

I

I

I

putchar('\n');

putchar('\n') ;

printf("assign status:\n") ;

sysmsg(&ids);

putchar('\n');

putchar('\n');

/* Call QIO system service.

ids=SYS$QiOW(0,ttchan, IO$_WRITEPBLK,&iosb, 0,0,

&buffer,p2,0,0,0,0);

*/

I
I

I

i
I

I

I

I
I

I

I

I
I
I

i

I

I

I
i

putchar (' \n') ;

printf ("qio status :\n") ;

sysmsg(&ids);

putchar('\n') ;

ids--iosb [0];

printf("i/o status:\n");

sysmsg(iosb);

I
I

I

I

I
I

I

I

I

I
I

I

I

I
I

I

c testalarm, for -- program to test alarm call, MicroVAX II.

c This program uses an event flag to signal

c an alarm after a specified period of time.

program testalarm

real*4

integer*4

integer*4

dtime

delta(2)

istat,ival, iflag, itimr, sys$readef

include ' ($ssdef)'

iflag = 1
itimr = 1

type *,'enter alarm delay time, in seconds (real number)'

accept *,dtime

I0

20

type *,'calling alarm routine'

!Convert delay time to VMS
call rtimsysbin(dtime,delta) !quadword format.

!Set timer.

call sysSsetimr(%val(iflag),delta,,%val(itimr))

type *,'waiting for event flag'

istat = sysSreadef(%val(iflag),ival)

if(istat .eq. SS$ WASSET)go to 20
call lib$wait(%ref_0.01))

go to I0
continue

type *,'ALARM!'

end

c testalarm ast.for -- program to test alarm call, MicroVAX II.

This program uses an AST routine to interrupt the main program

and signal an alarm after a specified period of time.

program testalarm

real*4

integer*4

integer*4

dtime

delta(2)

istat,ival, itimr

external alarmast

common/astcom/istat

!must use else a reserved opcode
!fault occurs

include ' ($ssdef)'

itimr = 1

istat = 0

type *,'enter alarm delay time, in seconds (real number)'

accept *,dtime

call rtimsysbin(dtime,delta)

!Convert delay time to VMS

!quadword format.

!call system routine to

!set timer and specify
!the AST routine.

call sys$setimr(,delta,alarmast,%val(itimr))

I0

20

type *,'waiting for alarm AST'

continue

if(istat .eq. SS$ WASSET)go to 20
call lib$wait(%ref(0.01))

go to 10

continue

type *,'ALARM!'

end

subroutine alarmast

include ' ($ssdef)'

integer*4 istat
common/astcom/istat

istat = SS$ WASSET

return

end

!this is the AST routine.

I
I

I
I

I

I
I

I
I

I

I
I
I

i

I

I

I
i

c rtimsysbin.for -- will convert an amount of time (in seconds,

c to a resolution of 0.01 sec), to system

c quadword format.

subroutine rtimsysbin (tim, deltim)

real*4 tim !time, in seconds, real number

integer*4 itics,idays,ihrs, imin,isec, ihsec, irem

character*16 string

integer*4 deltim(2) !time, in vax system quadword format

itics = tim*100. !convert "tim" to integer number of
t 0.01 sec. ticks

900

idays = itics/8640000

irem = jmod(itics,8640000)

ihrs = irem/360000

irem = jmod(irem, 360000)

imin = irem/6000

irem = jmod(irem, 6000)

!(100*60*60*24)ticks/day

!(100*60*60)ticks/hour

! (100"60) ticks/min

isec = irem/100 !(100)ticks/sec

ihsec = jmod(irem, 100) !ticks

write (string, 900) idays, ihrs, imin, isec, ihsec

format(i4,' ' i2.2 ':' i2 2 ' ', , , . , : ,i2.2,' ',i2.2)

type

call

900, idays, ihrs, imin, isec, ihsec

sys$bintim (string, deltim) !convert
!format

!DEBUG

from string to system delta

return

end

I
I

I
i

I

i

I

I
I

I
I

i
i

I

I
i

I

I

I

D_

Testalarm_ast.ada - a program to test alarm call, MicroVAX II.

This program uses an AST routine to interrupt the main program

and signal an alarm after a specified period of time.

NOTE: The link command for this program is as follows:

acs link testalarm_ast rtimsysbin

with text io; use text io;

with starTet; use starlet; -- used for system calls.

with system; use system; -- used by starlet.

with condition_handling; use condition_handling;-- used for status returns.

procedure testalarm ast is

package my_io is new float_io(float);

use my_io;

procedure rtimsysbin(dtime : float; delta_tim : date_time_type);
pragma interface(fortran,rtimsysbin);

pragma import_procedure(rtimsysbin, mechanism=>reference);

dtime : float := 0.0;

ids : cond_value_type;

delta_tim : date_time_type;

istat : integer := 0;

itimr : unsigned_longword := I;

-- input delay time.

-- system service status.

-- delay time (VMS quadword).

--***

task handler is -- THIS IS THE AST ROUTINE.

entry receive ast;

pragma ast_entry(receive_ast);
end handler;

task body handler is

begin

accept receive_ast;

istat := SS_WASSET;
end handler;

----WWWWWWWW*WWWW*WWWWW*WWWWWWWWW*WWWW*WWWWWWWWWWWWW,WWWWWW.W.WWWWWWWWWW.

begin

loop

begin

put_line("enter alarm delay time, in seconds (real number)");

new_line;

get(dtime);

exit;
-- get the input delay time.

-- exit loop if no error.

exception
when data error =>

skip_line; put("input error - try again"); new line(2);

end;

end loop;

-- call fortran subroutine to

-- convert delay time to VMS

-- quadword format.

I
I

I

I

I
I

I

I
I

I

I

I
I

I
I

I

I

I

rtimsysbin(dtime,delta tim);

-- call system routine to
-- set the timer and to

-- specify the AST routine.

setimr(status=>ids, daytim=>delta_tim,

astadr=>handler.receive_ast'ast_entry,
reqidt=>itimr);

put_line("waiting for alarm AST"); new_line;

then

loop

delay 0.01;
if istat = SS WASSET

m

exit;

end if;

end loop;

put("ALARM!"); new line;

end testalarm ast;

-- loop forever.

-- exit the loop.

I
!

I
I

I

I
I

I
I

i

I
I
I

I
I

I

I
I

/* testalarm_ast.c -- program to test alarm call, MicroVAX II. */

/*

/*
This program uses an AST routine to interrupt the main program */

and signal an alarm after a specified period of time. */

#include ssdef /* used for system services */

int istat ;

main()

{

extern alarmast();

float dtime;

int delta[2],ival,itimr;

itimr :i;

istat = 0;

printf("enter alarm delay time, in seconds (real number) \n") ;
scanf ("%f", &dtime) ;

rtimsysbin(&dtime,delta);

sys$setimr (0, delta, alarmast, itimr) ;

/* call system routine to set */

/* the timer and to specify */
/* the AST routine. */

printf("waiting for alarm AST\n");

while(istat != SS$ WASSET)
{

libSwait(0.01);

)

print f ("ALARM\n") ;

/*

alarmast()

{
/* This is the AST routine. */

istat = SS$ WASSET;

)
*I

I

I
I

I
I

I
I

I
I

I

I
I
I

I

I

I

I
I

-- adadelay.ada - An Ada program to test the Ada "delay" statment,
-- MicroVAX II.

with calendar, text io;
use calendar, text _o;

procedure adadelay is

package duration io is new fixed io(duration);
use duration io;

interval

tl

t2

dtime

ptime

: constant duration := 10.0;

: duration;

: duration;

: duration;

: duration;

begin

tl := seconds(clock);

loop

t2 := seconds(clock);

ptime := t2 - tl;

dtime := (interval - (ptime));

delay dtime;

tl := seconds(clock);

put(" proc. time = ");

put (" delay time = ") ;

put (" total time -- ") ;

end loop;

put (ptime); new line;

put(dtime); new line;

put(dtime+ptime); new_line; new_line;

end;

m_ task_order.ada - An Ada program used to determine the order of

activation of multiple tasks, MicroVAX-II.

with text io; use text io;

procedure task order is

I

I

I

I

task task4;

task task3;

task task2;

task taskl;

task body task2 is

begin -- beginning of task2.

put(" Task2 is starting"); new line;

I

I

I

-- beginning of taskl.

Taskl is starting"); new_line;

I

I

I

I

I

I

begin -- beginning of task4.

put(" Task4 is starting"); new_line;

end task4;

----***

----***

task body task3 is

begin -- beginning of task3.

put(" Task3 is starting"); new line;

end task3;

begin -- beginning of task_order.

put(" The driver (task_order) is starting"); new_line;

I
I

I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

end task order;

-- task exec.ada - Ada multi-task time-shared execution test.

i
I

I
I

I

m_

m_ NOTE:

This is a test program to run three tasks

by alternating their execution, letting

each one run for a specified time interval.

(MicroVAX-II version.)

This program is designed to run without

"time-slicing" of any kind.

with text io; use text io;

with calendar; use calendar;

procedure task exec is

package duration io is new fixed io(duration);

use duration_io;

package my_io is new integer_io(integer);
use my_io;

----***

-- procedure check -- reentrant procedure to let calling task
-- control its own execution.

I
!

I

I

-- This procedure checks to see if the process time has expired.
-- THIS PROCEDURE IS USED INSTEAD OF A TIME SLICE MECHANISM.

procedure check(interval : in duration; tl : in out duration) is

t2 : duration;

dtime : duration;
-- current time (seconds).

-- delta time (seconds).

begin

t2 := seconds(clock);

dtime := t2 - tl;

if dtime >= interval then

-- get curent time (seconds).

-- calculate how long the calling

-- task has been running.

--m

delay 0.01; -- delay just enough to schedule
-- another task.

-- (The calling task delays here

-- while other tasks run.)

tl := seconds(clock); -- get new start time (seconds).

I

I

I

I

task task3; -- declare tasks such that taskl starts first.
task task2;

task taskl;

----***

task body taskl is

tl : duration; -- process start time (seconds).

interval : constant duration := 5.0; -- desired process time.
icnt : integer := 0;

begin -- beginning of taskl.

,I

I

I
I

I

I

I
I

I

I
I

I
I

I

I

I
I

I

put(" Taskl is starting"); new line;

tl := seconds(clock); -- set starting time.

loop -- loop forever.

check(interval,tl); -- see if time has elapsed.
icnt := icnt + I;

put("Taskl = ") ; put(icnt);

put (" ") ; new line;

end loop;
end taskl;

task body task2 is

tl : duration; -- process start time (seconds).

interval : constant duration := 5.0; -- desired process time.

icnt : integer := 0;

begin

put(" Task2 is starting");

tl := seconds(clock);

loop

check(interval,tl);
icnt := icnt + I;

put("

put("

end loop;

end task2;

-- beginning of task2.
new line;

-- set starting time.

-- see if time has elapsed.

Task2 = "); put(icnt);

"); new line;

task body task3 is

tl : duration; -- process start time (seconds).

interval : constant duration := 5.0; -- desired process time.
icnt : integer := 0;

begin

put(" Task3 is starting");

tl := seconds(clock);
loop

check(interval,tl);
icnt := icnt + I;

put("
new line;

end loop;
end task3;

-- beginning of task3.
new line;

-- set starting time.
-- loop forever.

-- see if time has elapsed.

Task3 = "); put(icnt);

put(" task_exec is starting"); new_line;

end task exec;

I

I
I

I

I

I
I

I

I
I

I

I
!

I
I

I

I

I

_m

m_

_w

tstslice.ada Multi-task time-shared execution program using

time-slicing, IBM PC AT version.

This program is designed to perform the same functions

as tsk_exec.ada except using 5-second time-slicing

instead of the reentrant check subprogram.

To bind with 5-second time-slicing, use the following
command:

bind tstslice,adalib, options=(slice=5000)

with text_io; use text_io;

procedure tstslice is

task taskl;

task task2;

task task3;

task body taskl is

begin

put("taskl is starting"); new line;

loop -- loop forever.

put("Taskl"); new_line;

end loop;
end taskl;

_-***

task body task2 is

begin

put("Task2 is starting"); new line;

loop

put(" Task2"); new_line;

end loop;
end task2;

----***

task body task3 is

begin

put("Task3

loop

put("

end loop;

end task3;

is starting"); new_line;

Task3"); new line;

__***

begin

put(" tstdelay is starting"); new line;
end tstslice;

I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I
I

-- main.ada - program to test calling a FORTRAN function (innerprod)

-- from an Ada program, MicroVAX II.

NOTE: Use the following command to link:

acs link main innerprod

with text io; use text io;

procedure main is

package new float is new float io(float);

use new float;

type arrayl is array(integer range <>) of float;

function innerprod(a,b : arrayl; n : integer) return float;

pragma interface(fortran,innerprod);

pragma import_function(innerprod, mechanism => reference);

q : arrayl(1..100) := (i..I00 => 1.0);

t : arrayl(I..i00) := (i..i00 => 1.0);

p : float;

begin

p := innerprod(q, t, q'length);

put("returned value = "); put(p); new line;

end main;

I

I

I
I

I

I
I

I

i
I

I

I
I

I
I

!

!

C

C

c

c

c

innerprod.for - FORTRAN function, called by an Ada

program (main.ada), MicroVAX II.

function innerprod(a,b,n)

This routine multiples two one-dimensional arrays.

element-by-element, then sums the products.

Declare A and B as arrays of real numbers.

real innerprod, a(n), b(n)

sum = 0.0

do i00 i = l,n

sum = sum + a(i) * b(i)

i00 continue

innerprod = sum

return

end

I

I
II

I

I

I
I

I
I

I

I

I
I
I

I

I

I
I

-- mainl.ada - program to test calling a FORTRAN subroutine (innerprodl)
-- from an Ada program, MicroVAX II.

NOTE: Use the following command to link:

acs link mainl innerprodl

with text io; use text io;

procedure mainl is

package new float is new float io(float);

use new_float;

type arrayl is array(integer range <>) of float;

procedure innerprodl(a,b : arrayl; n : integer; sum : in out float);

pragma interface(fortran,innerprodl);

pragma import_procedure(innerprodl, mechanism => reference);

q
t

P

begin

innerprodl(q, t, q'length, p);

put("returned value = "); put(p);

end mainl;

: arrayl(I..i00) := (i..i00 => 1.0);

: arrayl(i..i00) := (i..i00 => 1.0);
: float;

new_line;

I
I

i

I

i
I

l

I
I

I

I

I
I

I
I

I

I

I

I

c

c

innerprodl.for - FORTRAN subroutine, called by an Ada

program (mainl.ada), MicroVAX II.

subroutine innerprodl (a,b,n, sum)

This routine multiples two one-dimensional arrays.

element-by-element, then sums the products.

Declare A and B as arrays of real numbers.

real a(n), b(n)

sum = 0.0

do I00 i = l,n

sum = sum + a(i) * b(i)

100 continue

return

end

'I

I

I

I
I

I

I

I
I
I

I

I

I

c formain.for - program to test calling an Ada function (nfind)

c from a FORTRAN subroutine, MicroVAX II.

c

c

NOTE: Use one of the the following commands to link:

acs link/nomain nfind formain, OR

link formain, [xxx]nfind

where [xxx] is the directory of the ada

library that contains the object

file for "nfind".

program formain

character*12 x

character*l b

x-- '1234 6789'

b __ ' ,

n = nfind(x, %ref(b))

The %ref mechanism specifier causes

b to be passed by reference.

type *, b , n

end

'1

I

I

I

I
I

I

I

!

I
I

I

I

I

l
I

I

-- nfind.ada -- An Ada function, called by a FORTRAN program
-- (formain), MicroVAX II.

function nfind(str : string;

c : character) return integer is

begin

for i in str'range loop

if str(i) = c then

return i;

end if;

end loop;

return 0;

end;

pragma export_function(nfind);

-- a match was found.

-- there was no match.

I

I
I

I

I

i
I

I
I

I

I

I
I
I

I

I

i

I

-- main2.ada

mm

program to test calling a FORTRAN subroutine, which

then calls a VAX system service, from an Ada program.
MicroVAX II.

with text io; use text io;

procedure main2 is

package new_integer is new integer_io(integer)7

use new_integer;

procedure sysmsg(msgnum : integer)7

pragma interface(fortran, sysmsg)7

pragma import_procedure(sysmsg, mechanism => reference)7

imsg : integer;

begin

put(" Please enter system error number: ")7

get(imsg)7
new line; new line;

sysmsg(imsg),

end main2;

I

I
I

!

I
I

I

I

I
i

I
I

I

I

I

I

c

c

c

sysmsg.for

This routine writes out the appropriate system message, then returns

to the caller instead of killing the program like lib$signal does.

subroutine sysmsg(ids)

integer*4 ids,sysSgetmsg

integer*2 msglen

character*256 msgbuf

!call system service to get system

!error message from status value.

istat_sysSgetmsg(%val(ids),msglen,msgbuf,%val(15),)

if(.not, istat)go to i00

900

i00

type 900,msgbuf(l:msglen)

format (x, a<msglen>)

return

end

I
I

I

I

I
I

I

I
I

I

I

I
I
I

I

I

I

I

-- mainl.ada - Version for the SUN 3/260.

-- NOTE: To link, use the following command:

-- bind mainl, adalib, interface= (modules="innerprodl .o", search="/lib/libc .a")

with text io; use text io;

procedure mainl is

package new float is new float_io(float);
use new float;

type arrayl is array(integer range <>) of float;

procedure innerprodl(a,b : arrayl; n : in out integer; sum : in out float);

pragma interface(fortran,innerprodl);

pragma interface name(innerprodl, "innerprodl_");

q : arrayl(I..I00) := (i..i00 => 1.0);

t : arrayl(I..i00) := (I..I00 => 1.0);

p : float;

r : integer;

begin

r :_ q' length;

innerprodl(q, t, r, p);

put(" returned value = "); put(p); new_line;

end mainl;

I

i

I

i

!

I

!

I

I

I

I

I

I

i

I

I

I

I

I

I

c innerprodl.f

c

c

I00

- Version for the SUN 3/260.

subroutine innerprodl(a,b,n, sum)

This routine multiples two one-dimensional arrays,

element-by-element, then sums the products.

Declare A and B as arrays of real numbers.

integer*2 n

real a(n), b(n)

sum = 0.0

do I00 i = l,n

sum = sum + a(i) * b(i)

continue

return

end

I
I

I
I

I

I

I

I
I

I

I
I
I

I

I

I
I

I

-- main2.ada - Version for the SUN 3/260.

-- NOTE: To link, use the following command:

-- bind main2, adalib, inter face= (modules="innerprod. o", search=" / lib/libc, a,,)

with system;
with text io; use text io;

procedure main2 is

package new float is new float io(float);
use new float;

type arrayl is array(integer range <>) of float;

function innerprod(a,b : arrayl; n : system.address) return float;

pragma interface(fortran, innerprod);

pragma interface_name(innerprod,"innerprod_");

val_n : integer;

q : arrayl(I..i00) := (I..i00 => 1.0);

t : arrayl(i..I00) := (i..I00 => 1.0);

p : float;

begin

val_n := q'length;

p := innerprod(q, t, val n'address);

put(" returned value = "); put(p); new line;

end main2;

!

!

!

!

I

I

I

I
I

I

I
I

I
I

I

I
I

I

I

c innerprod.f

i00

- Version for the SUN 3/260.

function innerprod(a,b,n)

This routine multiples two one-dimensional arrays,

element-by-element, then sums the products. Declare
A and B as arrays of real numbers.

integer*2 n

real innerprod, a(n), b(n)

sum = 0.0

do I00 i = l,n

sum = sum + a(i) * b(i)
continue

innerprod = sum

return

end

I

I

I
I

I

I
I

I
I

I
I

I
I
I

I
I

I

I

-- adafork.ada -- This version is for the SUN 3/260.

-- Note: Use the following command to link:
-- bind adafork,adalib, interface=(search="/lib/libc.a'')

with system;
with calendar;

with text io;

use calendar;

use text io;

procedure adafork is

package my_io is new integer_io(integer);

use my_io;

function fork return integer;

pragma interface(c,fork);

function sleep (paraml: integer) return integer;

pragma interface(c, sleep);

i : integer;

stat : integer := I;
dtime : duration := 30.0;

begin --adafork

fork_loop: for i in 1..20 loop

delay 1.0;

stat := sleep(l);
stat := fork;

if stat = 0 then

for j in 1..5 loop

put(" i'm task no.

delay dtime;

end loop;

exit fork loop;
end if;

end loop fork_loop;

") ; put(i); new line;

end adafork;

I

I

I
I

I

I

I
I

I
I

I

I

i
I

I

I
I

I

I

-- char.ada - Ada program used to perform an asychronous, two-task

-- I/O loading analysis, MicroVAX II version.

with text io; use text io;

with calendar; use calendar;

procedure char is -- char is the driver for the two tasks.

pragma time_slice (5.0);

task pra is

entry a;

end pra;

task prb is

entry b;

end prb;

task body pra is

begin

accept a do

loop

put("A");

end loop;

end a;

end pra;

-- loop forever.

task body prb is

begin

accept b do

delay 1.0;

loop

put("B");

end loop;

end b;

end prb;

-- loop forever.

begin -- driver justs starts the two tasks.

prb.b;

pra.a;

end char;

-- procload.ada - An Ada program used to perform a multiple process

-- loading analysis, MicroVAX II.

with text_io; use text_io;

I

I
I

I

procedure procload is

pragma time slice (0.01); -- i0 milliseconds.

idum : integer;

package my_io is new integer_io(integer);

use my_io;

flags:array (integer range 0..8190) of boolean;

i,prime,k, count,iter:integer;

task type test run;

type run name is access test run;

runl : run name;

task body test run is

iname : integer := 0;

begin

I

I

I

iname := idum;

for j in I..I0 loop

put("I'm task ");

new line;

delay 30.0;

end loop;

end test_run;

put(iname);

I
I

I

I

begin

for i in 1..20 loop
idum := i;

runl := new test run;

delay 1.0;

end loop;

delay 60.0;

_m code to cause a computational load

on the system (zprime.ada code).

put ("1550 iterations"); new_line;

I

I

I

for iter in i..1550 loop

count := 0;

flags := (0..8190 => TRUE);

for i in 0..8190 loop

if flags(i) then

prime := i + i + 3;

k := i + prime;

I
I

I

I

I
I

I

I

I
I

I

I
I

I
I

I

I

I

I

while k <= 8190 loop

flags(k) := FALSE;

k := k + prime;

end loop;

count := count + i;

end if;

end loop;

end procload;

